摘要:
The device is an optoelectronic device or transparent waveguide device that comprises a growth surface, a growth mask, an optical waveguide core mesa and a cladding layer. The growth mask is located on the semiconductor surface and defines an elongate growth window having a periodic grating profile. The optical waveguide core mesa is located in the growth window and has a trapezoidal cross-sectional shape. The cladding layer covers the optical waveguide core mesa and extends over at least part of the growth mask. Such devices are fabricated by providing a wafer comprising a growth surface, growing an optical waveguide core mesa on the growth surface by micro-selective area growth at a first growth temperature and covering the optical waveguide core mesa with cladding material at a second growth temperature, lower than the first growth temperature.
摘要:
In one aspect, a VCSEL includes a base region that has a vertical growth part laterally adjacent a first optical reflector and a lateral growth part that includes nitride semiconductor material vertically over at least a portion of the first optical reflector. An active region has at least one nitride semiconductor quantum well vertically over at least a portion of the lateral growth part of the base region and includes a first dopant of a first electrical conductivity type. A contact region includes a nitride semiconductor material laterally adjacent the active region and a second dopant of a second electrical conductivity type opposite the first electrical conductivity type. A second optical reflector is vertically over the active region and forms with the first optical reflector a vertical optical cavity overlapping at least a portion of the at least one quantum well of the active region. A method of fabricating a VCSEL also is described.
摘要:
Purely gain-coupled diffraction gratings may be realized for use in QCLs and other edge emitting lasers that lack a typical p-n junction. The periodic, typically heavily n-doped regions of doped diffraction gratings are replaced with p-type regions having significantly lower doping.
摘要:
An optical isolator for coupling light from a first waveguide to a second waveguide is disclosed. The optical isolator utilizes a resonator coupled to the first and second optical waveguides. The resonator has a resonance at λ for light traveling from the first optical waveguide to the second optical waveguide; however, the resonator does not have a resonance at λ for light traveling from the second waveguide to the first waveguide. The resonator can use a layer of ferromagnetic material in an applied magnetic field. The magnetic field within the ferromagnetic material varies in strength and/or direction over the layer of ferromagnetic material. The magnetic field can be generated by an external magnetic field that varies over the layer of ferromagnetic material. Alternatively, the resonator can include a layer of ferromagnetic metal that overlies a portion of the layer of ferromagnetic material and a constant external magnetic field.
摘要:
The electroabsorption modulator comprises a p-i-n junction structure that includes an active layer, a p-type cladding layer and an n-type cladding layer with the active layer sandwiched between the cladding layers. The electroabsorption modulator additionally comprises a quantum well structure located within the active layer. The p-type cladding layer comprises a layer of heavily-doped low-diffusivity p-type semiconductor material located adjacent the active layer that reduces the extension of the depletion region into the p-type cladding layer when a reverse bias is applied to the electroabsorption modulator. The reduced extension increases the strength of the electric field applied to the quantum well structure by a given reverse bias voltage. The increased field strength increases the extinction ratio of the electroabsorption modulator.
摘要:
The active region of a long-wavelength light emitting device is made by providing an organometallic vapor phase epitaxy (OMVPE) reactor, placing a substrate wafer capable of supporting growth of indium gallium arsenide nitride in the reactor, supplying a Group III–V precursor mixture comprising an arsenic precursor, a nitrogen precursor, a gallium precursor, an indium precursor and a carrier gas to the reactor and pressurizing the reactor to a sub-atmospheric elevated growth pressure no higher than that at which a layer of indium gallium arsenide layer having a nitrogen fraction commensurate with light emission at a wavelength longer than 1.2 μm is deposited over the substrate wafer.
摘要:
Light-emitting devices are described. One example of a light-emitting device includes a first barrier layer and a second barrier layer, and a quantum well layer located between the first and second barrier layers. The first and second barrier layers are composed of gallium arsenide, and the quantum well layer is composed of indium gallium arsenide nitride. A first layer is located between the quantum well layer and the first barrier layer. The first layer has a bandgap energy between that of the first barrier layer and that of the quantum well layer. Another example of a light-emitting device includes a quantum well and a carrier capture element adjacent the quantum well. The carrier capture element increases the effective carrier capture cross-section of the quantum well.
摘要:
Several methods for producing an active region for a long wavelength light emitting device are disclosed. In one embodiment, the method comprises placing a substrate in an organometallic vapor phase epitaxy (OMVPE) reactor, the substrate for supporting growth of an indium gallium arsenide nitride (InGaAsN) film, supplying to the reactor a group-III-V precursor mixture comprising arsine, dimethylhydrazine, alkyl-gallium, alkyl-indium and a carrier gas, where the arsine and the dimethylhydrazine are the group-V precursor materials and where the percentage of dimethylhydrazine substantially exceeds the percentage of arsine, and pressurizing the reactor to a pressure at which a concentration of nitrogen commensurate with light emission at a wavelength longer than 1.2 um is extracted from the dimethylhydrazine and deposited on the substrate.
摘要:
A multiple-wavelength laser diode array is described. A wavelength span of several tens of nanometers is achieved through band-filling of a quantum well active region. A multiple-wavelength array is formed by selectively introducing different amounts of optical loss into the array elements, to affect the threshold current density. With minimum losses, the laser oscillates at a long wavelength, while an element with high loss will undergo more bandfilling and be forced to emit at a shorter wavelength. To illustrate the structures which incorporate these additional, selective losses, a 2-red-wavelength AlGaInP laser array is described. In preferred embodiments, increased optical loss is achieved in an SBR type laser by narrowing the ridge region, or by reducing its thickness. In another type of laser, increased optical loss is achieved by a very thin upper cladding layer causing increased optical absorption in a close overlying cap or metal layer.
摘要:
Index-guided semiconductor lasers having buried ridge waveguides which use the optical confinement resulting from the bandgap difference between a semiconductor material grown on the top plane of the ridge and a semiconductor material grown on the ridge's sidewalls. Beneficially AlGaInP is OMVPE formed on a ridged (001) GaAs substrate in which a sidewall of the ridge is at an angle of between 5 degrees and the {111} A plane of the substrate.