Abstract:
In various embodiments, the present disclosure provides filtering compositions, their method of production, and methods for their use. In specific implementations, the filtering composition includes lanthanum and has a surface area of at least about 125 g/m2. In more specific examples, the filtering composition is free-flowing or has a moisture content between about 10 wt % about 30 wt %. Particular compositions include at least one of iron or magnesium. Some embodiments of the present disclosure provide filtering compositions that are resilient or leach-resistant.
Abstract translation:在各种实施方案中,本公开提供过滤组合物,其生产方法及其使用方法。 在具体实施方式中,过滤组合物包括镧并且具有至少约125g / m 2的表面积。 在更具体的实例中,过滤组合物是自由流动的或具有约10重量%至约30重量%的水分含量。 特定的组合物包括铁或镁中的至少一种。 本公开的一些实施方案提供了具有弹性或耐水浸性的过滤组合物。
Abstract:
An acid gas sorbent composition is disclosed. The composition comprises a compound having the following formula: (SiO2)x(OH)yF.B wherein F optionally exists and said F is at least one of the following: a functionalized organosilane, a sulfur-containing organosilane, or an amine-containing organosilane; and wherein B is a hygroscopic solid at a preferred water to solid molar ratio of about 0.1 to about 6, and more particularly, B is a basic inorganic solid including, but not limiting to, alkali or alkali-earth metal oxides, hydroxides, carbonates, or bicarbonates, containing at least one of the following metal cations: calcium, magnesium, strontium, barium, sodium, lithium, potassium, cesium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, dysprosium, scandium, ytterbium, yttrium, or erbium; wherein the molar ratio of y/x is equal to about 0.01 to about 0.5.
Abstract:
Systems and methods for treating a fluid with a body are disclosed. Various aspects involve treating a fluid with a porous body. In select embodiments, a body comprises ash particles, and the ash particles used to form the body may be selected based on their providing one or more desired properties for a given treatment. Various bodies provide for the reaction and/or removal of a substance in a fluid, often using a porous body comprised of ash particles. Computer-operable methods for matching a source material to an application are disclosed. Certain aspects feature a porous body comprised of ash particles, the ash particles have a particle size distribution and interparticle connectivity that creates a plurality of pores having a pore size distribution and pore connectivity, and the pore size distribution and pore connectivity are such that a first fluid may substantially penetrate the pores.
Abstract:
This disclosure relates generally to methods and rare earth-containing additives for removing target materials in the form of hydroxides, carbonates, hydrates, or oxyhydroxyls from, a typically aqueous, liquid medium.
Abstract:
In various embodiments, the present disclosure provides filtering compositions, their method of production, and methods for their use. In specific implementations, the filtering composition includes lanthanum and has a surface area of at least about 125 g/m2. In more specific examples, the filtering composition is free-flowing or has a moisture content between about 10 wt % about 30 wt %. Particular compositions include at least one of iron or magnesium. Some embodiments of the present disclosure provide filtering compositions that are resilient or leach-resistant.
Abstract:
In various embodiments, the present disclosure provides filtering compositions, their method of production, and methods for their use. In specific implementations, the filtering composition includes lanthanum and has a surface area of at least about 125 g/m2. In more specific examples, the filtering composition is free-flowing or has a moisture content between about 10 wt % about 30 wt %. Particular compositions include at least one of iron or magnesium. Some embodiments of the present disclosure provide filtering compositions that are resilient or leach-resistant.
Abstract translation:在各种实施方案中,本公开提供过滤组合物,其生产方法及其使用方法。 在具体实施方式中,过滤组合物包括镧并且具有至少约125g / m 2的表面积。 在更具体的实例中,过滤组合物是自由流动的或具有约10重量%至约30重量%的水分含量。 特定的组合物包括铁或镁中的至少一种。 本公开的一些实施方案提供了具有弹性或耐水浸性的过滤组合物。
Abstract:
Systems and methods for treating a fluid with a body are disclosed. Various aspects involve treating a fluid with a porous body. In select embodiments, a body comprises ash particles, and the ash particles used to form the body may be selected based on their providing one or more desired properties for a given treatment. Various bodies provide for the reaction and/or removal of a substance in a fluid, often using a porous body comprised of ash particles. Computer-operable methods for matching a source material to an application are disclosed. Certain aspects feature a porous body comprised of ash particles, the ash particles have a particle size distribution and interparticle connectivity that creates a plurality of pores having a pore size distribution and pore connectivity, and the pore size distribution and pore connectivity are such that a first fluid may substantially penetrate the pores.
Abstract:
The present invention provides the following new polymers which are useful for hydrogen storage: (i) a polymer comprising -[MN2]— as a repeating unit, wherein M is selected from the group consisting Sc, Ti, V, Cr, Mn, Fe, Co, Zr, Nb, Mo, and mixtures thereof; and (ii) a polymer comprising -[M2N3]— as a repeating unit, wherein M is selected from the group consisting Sc, Ti, V, Cr, Mn, Fe, Co, Zr, Nb, Mo, and mixtures thereof.
Abstract:
Systems and methods for treating a fluid with a body are disclosed. Various aspects involve treating a fluid with a porous body. In select embodiments, a body comprises ash particles, and the ash particles used to form the body may be selected based on their providing one or more desired properties for a given treatment. Various bodies provide for the reaction and/or removal of a substance in a fluid, often using a porous body comprised of ash particles. Computer-operable methods for matching a source material to an application are disclosed. Certain aspects feature a porous body comprised of ash particles, the ash particles have a particle size distribution and interparticle connectivity that creates a plurality of pores having a pore size distribution and pore connectivity, and the pore size distribution and pore connectivity are such that a first fluid may substantially penetrate the pores.
Abstract:
Processes and an apparatus for hydrogenating highly unsaturated hydrocarbons contained in an effluent stream to an unsaturated hydrocarbons or isomerizing the highly unsaturated hydrocarbons to other highly unsaturated hydrocarbons are provided. The effluent stream is contacted with a guard bed to remove at least a portion of impurities contained within the process stream and to isomerize at least a portion of the highly unsaturated hydrocarbons. In an aspect, the guard bed comprises a solid sulfur adsorption/isomerization catalyst composition. In an aspect, the effluent stream is contacted with a catalyst that comprises an inorganic support, palladium, and silver.