Abstract:
A process of isolating 1,4-butanediol (1,4-BDO) from a fermentation broth includes separating a liquid fraction enriched in 1,4-BDO from a solid fraction comprising cells, removing water from said liquid fraction, removing salts from said liquid fraction, and purifying 1,4-BDO. A process for producing 1,4-BDO includes culturing a 1,4-BDO-producing microorganism in a fermentor for a sufficient period of time to produce 1,4-BDO. The 1,4-BDO-producing microorganism includes a microorganism having a 1,4-BDO pathway having one or more exogenous genes encoding a 1,4-BDO pathway enzyme and/or one or more gene disruptions. The process for producing 1,4-BDO further includes isolating 1,4-BDO.
Abstract:
The invention provides a non-naturally occurring microbial organism having an acetyl-CoA pathway and the capability of utilizing syngas or syngas and methanol. In one embodiment, the invention provides a non-naturally occurring microorganism, comprising one or more exogenous proteins conferring to the microorganism a pathway to convert CO, CO2 and/or H2 to acetyl-coenzyme A (acetyl-CoA), methyl tetrahydrofolate (methyl-THF) or other desired products, wherein the microorganism lacks the ability to convert CO or CO2 and H2 to acetyl-CoA or methyl-THF in the absence of the one or more exogenous proteins. For example, the microbial organism can contain at least one exogenous nucleic acid encoding an enzyme or protein in an acetyl-CoA pathway. The microbial organism is capable of utilizing synthesis gases comprising CO, CO2 and/or H2, alone or in combination with methanol, to produce acetyl-CoA. The invention additionally provides a method for producing acetyl-CoA, for example, by culturing an acetyl-CoA producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding an acetyl-CoA pathway enzyme or protein in a sufficient amount to produce acetyl-CoA, under conditions and for a sufficient period of time to produce acetyl-CoA.
Abstract:
The invention provides a non-naturally occurring microbial organism having an adipate, 6-aminocaproic acid or caprolactam pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective adipate, 6-aminocaproic acid or caprolactam pathway. The invention additionally provides a method for producing adipate, 6-aminocaproic acid or caprolactam. The method can include culturing an adipate, 6-aminocaproic acid or caprolactam producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding an adipate, 6-aminocaproic acid or caprolactam pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce adipate, 6-aminocaproic acid or caprolactam.
Abstract:
The invention provides a microbial fuel cell having a dissimilatory metal-reducing microbe expressing exogenous or native ATPase subunits, the ATPase subunits assembling into an active ATP synthase and consuming ATP in a futile cycle. The dissimilatory metal-reducing microbe can include an organism selected from the organisms set forth in Table 1. The one or more exogenous ATPase subunits can include a subunit selected from the ATPase subunits set forth in Tables 2 or 3. Also provided is a microbial fuel cell having a dissimilatory metal-reducing microbe expressing one or more exogenous genes encoding a gene product that promotes ATP consumption, the gene products of the one or more exogenous genes having an activity that reduces ATP synthesis, increases ATP consumption or both. The one or more gene products can increase ATP consumption through a futile cycle or through altering a metabolic reaction directly involved in ATP synthesis. Further provided is a microbial fuel cell having a dissimilatory metal-reducing microbe expressing one or more exogenous genes encoding a gene products that increases the electron/mole ratio compared to an unmodified microbe, wherein the increased ratio enhances electron transfer to an electrode. A method of producing electricity from an microbial organism is further provided. The method includes: (a) culturing a microbial fuel cell under anaerobic conditions sufficient for growth, the microbial fuel cell comprising a dissimilatory metal-reducing microbe expressing exogenous ATPase subunits, the ATPase subunits assembling into an active ATP synthase and consuming ATP in a futile cycle when grown under anaerobic conditions, and (b) capturing electrons produced by an increased ATP demand with an electron acceptor.
Abstract:
The disclosure provides polypeptides and encoding nucleic acids of engineered formate dehydrogenases. The disclosure also provides cells expressing an engineered formate dehydrogenase. The disclosure further provides methods for producing a bioderived compound comprising culturing cells expressing an engineered formate dehydrogenase. Where the engineered formate dehydrogenase is capable of catalyzing a conversion.
Abstract:
The disclosure relates to omega-hydroxylated fatty acid derivatives and methods of producing them. Herein, the disclosure encompasses a novel and environmentally friendly production method that provides omega-hydroxylated fatty acid derivatives at high purity and yield. Further encompassed are recombinant microorganisms that produce omega-hydroxylated fatty acid derivatives through selective fermentation.
Abstract:
The disclosure relates to the field of specialty chemicals and methods for their synthesis. In embodiments, the disclosure provides novel multifunctional fatty acid derivative molecules such as e.g., fatty triols, fatty tetrols, dihydroxy fatty acids, etc. The disclosure further provides derivatives of the disclosed multifunctional molecules which are useful e.g., in the production of personal care products, surfactants, detergents, polymers, paints, coatings, and as emulsifiers, emollients, and thickeners in cosmetics and foods, as industrial solvents and plasticizers, etc. The disclosure further provides biochemical pathways, recombinant microorganisms and methods for the biological production of various multifuctional fatty acid derivatives.
Abstract:
Recombinant proteobacteria, including γ-proteobacteria, comprising a heterologous acyl-ACP desaturase and a heterologous acyl-ACP thioesterase, wherein the native dual 3-hydroxy acyl-ACP dehydratase/isomerase is deleted are provided herein. The recombinant proteobacteria produce non-native monounsaturated free fatty acids or derivatives thereof. Methods of producing non-native monounsaturated free fatty acids or derivatives thereof are also provided, in addition to cell cultures and fatty acid compositions produced by the recombinant proteobacteria. The recombinant proteobacteria may be used to produce insect pheromones or precursors thereof, and fragrances or precursors thereof.
Abstract:
The disclosure relates to acyl-ACP reductase (AAR) enzyme variants that result in improved fatty aldehyde and fatty alcohol production when expressed in recombinant host cells. The disclosure further relates to methods of making and using such AAR variants for the production of fatty alcohol compositions having particular characteristics.
Abstract:
The invention provides a non-naturally occurring microbial organism having a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The invention additionally provides a method for producing 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid. The method can include culturing a 6-aminocaproic acid, caprolactam or hexametheylenediamine producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid.