Abstract:
Semiconductor die packages are disclosed. An exemplary semiconductor die package includes a premolded substrate. The premolded substrate can have a semiconductor die attached to it, and an encapsulating material may be disposed over the semiconductor die.
Abstract:
Disclosed are semiconductor dice with backside trenches filled with elastic conductive material. The trenches reduce the on-state resistances of the devices incorporated on the dice. The elastic conductive material provides a conductive path to the backsides of the die with little induced stress on the semiconductor die caused by thermal cycling. Also disclosed are packages using the dice, and methods of making the dice.
Abstract:
A receptacle connector including at least three mating interfaces is provided and includes an insulative housing with a first and second groups of contacts mounted thereon. The first group of contacts serve as first Interface (USB 2.0), and a second group of contacts alternatively serve as mating interface of second and third interfaces (ESATA and USB 3.0). A switching board is provided and includes mounting interface of the second and the third interfaces. A shuttle member is moveably disposed within the housing and selectively interconnects the second group of contacts with either the mounting interface of the second interface or mounting interface of the third interface.
Abstract:
An exemplary driving method of a display panel with half-source-driving structure is provided. The display panel includes at least one pixel each using a capacitor to store a voltage. A terminal of the capacitor is adapted to receive a display data inputted from a data line, and another terminal of the capacitor is electrically coupled to a common electrode. The driving method includes: obtaining a direct current power signal; coupling an alternating current signal with the direct current power signal to generate a common electrode driving signal; and applying the common electrode driving signal to the common electrode. A rising time of a rising edge and a falling time of a falling edge of the common electrode driving signal are modified to improve a V-line mura phenomenon of the display panel.
Abstract:
A manufacturing method of barrier ribs of a plasma display panel is provided. First, a substrate, divided into a display area and a non-display area located in the periphery of the display area, is provided. Next, when a patterned barrier material layer forms on the substrate, the layer further constitutes discharging spaces in the display area and a plurality of honeycomb supporting structures in the non-display area.
Abstract:
An LCD with two-dot inversion includes plural gate lines for transmitting gate driving signals, plural data lines for transmitting data driving signals, and a pixel array. The pixel array includes plural pixels. The plural pixels display frames according to the received gate driving signals and data driving signals. A first data line of the plural data lines is coupled to a first column of pixels and a second column of pixels. The plural data lines are curves with several bends. The difference between the numbers of the first and the second columns is at least two.
Abstract:
A testing device for portable electronic devices includes a processor storing test programs corresponding to various portable electronic devices, a control module connected to the processor, and a testing apparatus connected to the control module and connecting to tested portable electronic devices. The processor directs the control module and the testing apparatus to test portable electronic devices according to predetermined test programs in a main control mode, and the control module cooperates with the testing apparatus to test portable electronic devices and directs the processor to select test programs according to the tested portable electronic device in a subsidiary control mode.
Abstract:
A memory structure disclosed in the present invention features a control gate and floating gates being positioned in recessed trenches. A method of fabricating the memory structure includes the steps of first providing a substrate having a first recessed trench. Then, a first gate dielectric layer is formed on the first recessed trench. A first conductive layer is formed on the first gate dielectric layer. After that, the first conductive layer is etched to form a spacer which functions as a floating gate on a sidewall of the first recessed trench. A second recessed trench is formed in a bottom of the first recessed trench. An inter-gate dielectric layer is formed on a surface of the spacer, a sidewall and a bottom of the second recessed trench. A second conductive layer formed to fill up the first and the second recessed trench.
Abstract:
A collection container and a method for collecting a biological sample, particularly whole blood, includes at least one stabilizing agent in an amount effective to stabilize and inhibit protein degradation and/or fragmentation. The stabilizing agent is able to stabilize proteases in the biological sample, particularly at the point of collection, by inhibiting protein degradation and/or fragmentation in the sample when the sample is stored. The stabilizing agent includes one or more protease inhibitors.