Abstract:
An integrated circuit is provided. The integrated circuit includes a mapping circuit configured to determine a state associated with a first universal series bus (USB) communication mode based on one or both of a signal level on a first data line and a signal level on a second data line. The integrated circuit also includes a line state converter circuit configured to generate a line state associated with a second USB communication mode based on the determined state and based on one or both of the signal level on the first data line and the signal level on the second data line.
Abstract:
A scaled voltage supply to supply voltage biases to circuits in voltage zones. The scaled voltage supply includes a master voltage corresponding to a voltage drop across a master-upper rail having a voltage Vdd and a master-lower rail having a voltage Vss=0. Further, the supply includes a voltage-divider network dividing the master voltage Vdd into intermediate voltages αVdd, βVdd, etc., wherein α and β are predetermined constants. These intermediate voltages scale with the master voltage and are supplied to the voltage zones using non-invasive soft rails. In one implementation the soft rails use voltage mirrors to supply the intermediate voltages to the circuits within voltage zones.
Abstract:
A method for reducing pattern density effects in semiconductor fabrication includes forming a first mask that includes one or more arrays of uniformly distributed pattern. Each array of the uniformly distributed pattern includes similar pattern elements having similar dimensions, orientations, and distances. Using the first mask allows forming a layer of semiconductor devices based on the first mask with reduced pattern density effects. A second mask is formed for the layer based on the first mask. The second mask includes undesired portions, for which the pattern is not uniform. Using the second mask allows removing the undesired portions of the formed layer of the semiconductor devices to create desired structures on the formed layer without a need for using optical proximity correction (OPC).
Abstract:
Embodiments provide an area, cost, and power efficient multi-service transceiver architecture. The multi-service transceiver architecture simplifies receiver/transmitter front ends needed for a multi-service architecture, by replacing significant portions of multiple receiver and/or transmitter front ends with a single ADC and/or DAC, respectively. In embodiments, a plurality of received service contents are combined into one composite analog/RF signal and applied to an ADC. The ADC converts the composite signal into a composite multi-service digital signal. Digital techniques are then used to separate the plurality of service contents into a plurality of respective digital streams that each can be independently demodulated. Similarly, in the transmit direction, a plurality of digital streams, including a plurality of service contents, are combined into one composite digital signal. The composite digital signal is applied to a DAC to generate a composite multi-service analog/RF signal for subsequent transmission over a coaxial cable or wirelessly via an antenna.
Abstract:
A secured communication network can include a server including an authentication backend, the authentication backend configured to communicate with an authentication front end of a communication device. A server applet can be associated with the authentication backend. The server applet can authenticate an access right associated with the communication device and establish a security level for the communication with the communication device based on information received from the authentication front end.
Abstract:
A device for coordinating frequency division multiplexing transmissions over a shared transmission medium may include a processor circuit configured to receive bandwidth requests from devices for transmissions over the shared transmission medium during a time period. A first bandwidth request may correspond to a point-to-multipoint transmission over the shared transmission medium. The processor circuit may be further configured to schedule bandwidth allocations on the shared transmission medium for the time period based at least in part on the bandwidth requests, where a first bandwidth allocation that corresponds to the first point-to-multipoint transmission is scheduled during the time period prior to other bandwidth allocations. The processor circuit may be further configured to transmit, over the shared transmission medium, an indication of the bandwidth allocations.
Abstract:
An exemplary implementation of the present disclosure includes a stacked package having a top die from a top reconstituted wafer situated over a bottom die from a bottom reconstituted wafer. The top die and the bottom die are insulated from one another by an insulation arrangement. The top die and the bottom die are also interconnected through the insulation arrangement. The insulation arrangement can include a top molding compound that flanks the top die and a bottom molding compound that flanks the bottom die. The top die and the bottom die can be interconnected through at least the, top molding compound. Furthermore, the top die and the bottom die can be interconnected through a conductive via that extends within the insulation arrangement.
Abstract:
A system performs residual echo suppression on a microphone signal that receives, e.g., voice commands, and that is exposed to echo from multiple speakers. An example is a smartphone that receives voice commands while the smartphone is playing music through stereo speakers. The system estimates residual echo level in different ways, and determines which estimate to use. The technique responds well to the difficult to handle scenario of a spatially quiescent image suddenly transitioning to a spatially rich image. Even in the face of such difficult scenarios, the system detects and removes residual echo from the microphone signal, instead of allowing the undesired residual echo to pass through.
Abstract:
A communication device, such as a smart phone, includes an envelope tracking power supply. The envelope tracking power supply is configured for direct connection to a supply voltage. The direct connection may be made without connection through an intermediate voltage regulator, such as a low drop out regulator. The supply voltage may be a relatively high battery voltage, for example, that would normally result in greater than permissible voltage limits on the transistors used in conventional envelope tracking power supplies.
Abstract:
A system implementing switching diversity in a scalable radio frequency communication system includes a primary radio frequency integrated circuit (RFIC), a first secondary RFIC, and a second secondary RFIC. The first secondary RFIC is configured to receive a radio frequency (RF) signal from a device via antenna elements based on a first beam setting, and transmit the RF signal to the primary RFIC. The primary RFIC is configured to receive the RF signal; downconvert the RF signal to an intermediate frequency (IF) signal; transmit the IF signal to a baseband processor; receive, from the baseband processor, a control signal including a second beam setting; and transmit the control signal to the second secondary RFIC. The second secondary RFIC is configured to receive the control signal from the first primary RFIC, and receive the first RF signal from the device via second antenna elements based on the second beam setting.