Abstract:
The present invention relates to a method for manufacturing a film having an oxygen transmission rate in the range of from 1 cc/m2/24 h to 500 cc/m2/24 h according to ASTM D-3985, at a relative humidity of more than 50% at 25° C., or higher than 75% at 25° C., or higher than 85% at 25° C., wherein the method comprises the steps of: providing a first suspension comprising a microfibrillated cellulose, wherein the dry content of the suspension is in the range of from 0.1 to 10% by weight, adding a wet strength additive to said first suspension, at an amount of from 0.1 to 10 weight-% based on the amount of microfibrillated cellulose (dry/dry), thereby forming a mixture of the microfibrillated cellulose and the wet strength additive, applying said mixture to a substrate to form a fibrous web and drying said web to form said film. The present invention also relates to a film produced according to the method.
Abstract:
The invention provides a method for the production of a composite comprising microfibrillated cellulose (MFC) and precipitated calcium carbonate. The method is characterized in that MFC is added to a suspension of calcium hydroxide during carbonation, whereby calcium carbonate is precipitated onto fibers or fibrils of the MFC in a controlled manner. By adding microfibrillated cellulose to the calcium suspension during the carbonation, the brightness and the strength of the MFC/PCC-composite is enhanced. Moreover, the inventive method facilitates the distribution of calcium dioxide and MFC in the suspension and thus gives rise to a more homogenous product.
Abstract:
The present invention relates to a new process for improving dewatering when manufacturing a film comprising high amounts of microfibrillated cellulose (MFC) without negatively impacting the film properties. According to the present invention a high amount of nanoparticles is used as an additive, optionally together with a polymer.
Abstract:
The invention relates to a method of manufacturing a shaped tray or plate of fibrous material. The method comprises the steps of (i) providing a fibrous pulp, in which the fibres substantially consist of at least 85 wt-% of softwood fibres having an average fibre length of at least 2.0 mm and at most 15 wt-% of broke having a fibre length of about 0.05 mm to 1.0 mm, (ii) turning the pulp into a foamed suspension, (iii) supplying the foamed suspension from a headbox to a forming fabric of a board machine to form a fibrous web, (iv) drying the web to obtain a dried web having a compressibility in the thickness direction of at least 20%, and (v) including the web as a layer in a board, which is turned to said tray or plate by thermopressing or deep-drawing. The invention even covers shaped trays and plates produced by use of the method.
Abstract:
The invention relates to a packaging board comprising a fibrous base and one or more polymer coating layers on one or both sides of the fibrous base. According to the invention the fibrous base contains the combination of an alkyl ketene dimer size, stearic acid anhydride, a wet-strength size and an aluminium compound, which give the board resistance to aggressive liquids as well as thermal treatment, particularly an improved resistance to raw edge penetration in such circumstances. The invention further relates to containers and packages made of the board, for instance disposable drinking cups, dairy product cartons and auto-clave packages, as well as use of the board for such purposes.
Abstract:
A substantially dry composite material comprising a nanofibrillated polysaccharide and two or more additives, wherein the composite nanofibrillated polysaccharide is a microfibrillated cellulose and wherein the additives are lime milk and carbon dioxide, wherein the additives are allowed to react with each other and forming a precipitated calcium carbonate on the nanofibrillated polysaccharide, thereby forming a composite product comprising precipitated calcium carbonate and nanofibrillated polysaccharide.
Abstract:
The invention relates to a hydrophobically sized fibrous web layer, methods for the preparation of a fibrous web or a fibre-based coating, a multilayer board product having at least a middle layer formed of said fibrous web, as well as use of a heat-sensitive surfactant for said methods and products. According to the method microfibrillated cellulose (MFC) and hydrophobic size are brought to a foam with water and the heat-sensitive surfactant, the foam is supplied to a forming fabric of a paper or board machine, dewatered by suction of air through the forming fabric, and dried to a web product. Alternatively the foam may be supplied onto a premade fibrous web and dried to form a coating layer. To prevent gradual degradation of the hydrophobic sizing the hydrophilic functionality of the surfactant contained in the web is finally destroyed by heating. The method uses e.g. AKD-based surfactants with a hydrophilic moiety, which decompose is decomposed by heat, may be used. If pulp of a greater fibre length, such as CTMP, is also included, a high bulk in combination with a high Scott bond value is achieved, to provide improved wet and dry tensile strength for the paper and board products.
Abstract:
A method for drying nanofibrillated polysaccharide to obtain a substantially dry nanofibrillated polysaccharide product, comprising the following steps: (i) providing an aqueous suspension of nanofibrillated polysaccharide; (ii) increasing the solid content of said suspension, thereby forming a high solid content microfibrillated cellulose suspension; and (iii) drying said high solid content microfibrillated cellulose suspension, through a simultaneous heating and mixing operation.
Abstract:
The present invention relates to a method for manufacturing a polymer product with super- or highly hydrophobic characteristics, preferably in the form of a film. Also methods for the manufacturing of a laminate and a polymer coated paper or board product, respectively, both having said characteristics, are disclosed.The present invention also relates to products obtainable by said methods and uses thereof.