摘要:
A method for reducing stripe patterns comprising receiving scattered light signals from a backside surface of a laser annealed backside illuminated image sensor wafer, generating a backside surface image based upon the scattered light signals, determining a distance between an edge of a sensor array of the laser anneal backside illuminated image sensor wafer and an adjacent boundary of a laser beam and re-calibrating the laser beam if the distance is less than a predetermined value.
摘要:
A method includes bonding a first bond layer to a second bond layer through eutectic bonding. The step of bonding includes heating the first bond layer and the second bond layer to a temperature higher than a eutectic temperature of the first bond layer and the second bond layer, and performing a pumping cycle. The pumping cycle includes applying a first force to press the first bond layer and the second bond layer against each other. After the step of applying the first force, a second force lower than the first force is applied to press the first bond layer and the second bond layer against each other. After the step of applying the second force, a third force higher than the second force is applied to press the first bond layer and the second bond layer against each other.
摘要:
The present disclosure provides various embodiments of a via structure and method of manufacturing same. In an example, a method for forming a via structure includes forming a via in a semiconductor substrate, wherein via sidewalls of the via are defined by the semiconductor substrate; forming a dielectric layer on the via sidewalls; removing the dielectric layer from a portion of the via sidewalls; and forming a conductive layer to fill the via, wherein the conductive layer is disposed over the dielectric layer and the portion of the via sidewalls. In an example, the dielectric layer is an oxide layer.
摘要:
Provided is a semiconductor image sensor device. The image sensor device includes a substrate. The image sensor device includes a first pixel and a second pixel disposed in the substrate. The first and second pixels are neighboring pixels. The image sensor device includes an isolation structure disposed in the substrate and between the first and second pixels. The image sensor device includes a doped isolation device disposed in the substrate and between the first and second pixels. The doped isolation device surrounds the isolation structure in a conformal manner.
摘要:
A method includes forming a MEMS device, forming a bond layer adjacent the MEMS device, and forming a protection layer over the bond layer. The steps of forming the bond layer and the protection layer include in-situ deposition of the bond layer and the protection layer
摘要:
The present disclosure provides one embodiment of a method. The method includes providing a semiconductor substrate having a front side and a backside, wherein the front side of the semiconductor substrate includes a plurality of backside illuminated imaging sensors; bonding a carrier substrate to the semiconductor substrate from the front side; thinning the semiconductor substrate from the backside; performing an ion implantation to the semiconductor substrate from the backside; performing a laser annealing process to the semiconductor substrate from the backside; and thereafter, performing a polishing process to the semiconductor substrate from the backside.
摘要:
A semiconductor structure is provided. The semiconductor structure includes a first floating gate on the semiconductor substrate, the floating gate having a concave side surface; a first control gate on the first floating gate; a first spacer adjacent to the first control gate; a first word line adjacent a first side of the first floating gate with a first distance; and an erase gate adjacent a second side of the first floating gate with a second distance less than the first distance, the second side being opposite the first side.
摘要:
Provided is an apparatus. The apparatus includes: a first deposition component that is operable to form a compound over a semiconductor wafer, the compound including at least one of: a III-family element and a V-family element; a second deposition component that is operable to form a passivation layer over the compound; and a transfer component that is operable to move the semiconductor wafer between the first and second deposition components, the transfer component enclosing a space that contains substantially no oxygen and substantially no silicon; wherein the loading component, the first and second deposition components, and the transfer component are all integrated into a single fabrication tool.
摘要:
Provided is an image sensor device. The image sensor device includes a pixel formed in a substrate. The image sensor device includes a first micro-lens embedded in a transparent layer over the substrate. The first micro-lens has a first upper surface that has an angular tip. The image sensor device includes a color filter that is located over the transparent layer. The image sensor device includes a second micro-lens that is formed over the color filter. The second micro-lens has a second upper surface that has an approximately rounded profile. The pixel, the first micro-lens, the color filter, and the second micro-lens are all at least partially aligned with one another in a vertical direction.
摘要:
A semiconductor device includes a substrate wafer, a dielectric layer overlying the substrate wafer, a patterned conductor layer in the dielectric layer, and a first barrier layer overlying the conductor layer. A silicon top wafer is bonded to the dielectric layer. A via is formed through the top wafer and a portion of the dielectric layer to the first barrier layer. A sidewall dielectric layer is formed along inner walls of the via, adjacent the top wafer to a distance below an upper surface of the top wafer, forming a sidewall dielectric layer shoulder. A sidewall barrier layer is formed inward of the sidewall dielectric layer, lining the via from the first barrier layer to the upper surface of the top wafer. A conductive layer fills the via and a top barrier layer is formed on the conductive layer, the sidewall barrier layer, and the top wafer.