Abstract:
Minimally invasive apparatus and method for treating medical conditions of hollow organs. The treatment apparatus and method provide for delivery of energy from fluid sources of energy to the interior surface of the hollow organ in contact with the underlying glands, nerves, and muscle walls of the organ.
Abstract:
Described herein are devices, systems and methods for treatment of tissue within a lumen of a body. For example, the devices described herein may be used to treat the urethra or gastrointestinal tract, including a sphincter. These devices may provide an expandable element at the distal end of an elongate body and may also include a plurality of electrodes (e.g., needle electrodes) configured to extend from the device and into the tissue to deliver energy to multiple, circumferentially arranged treatment sites. Sufficient energy may be delivered from the device to create a desired tissue effect.
Abstract:
A minimally invasive treatment and appartus for treating medical conditions of hollow organs is described. Electrodes positioned within the organ and in surface contact with the underlying glands, nerves, and muscle walls of the organ apply energy to specific glandular, nerve, or muscular areas to alter the organ's operation.
Abstract:
An apparatus includes an expandable member. The expandable member is sized to be positionable in a sphincter. An energy delivery device is positioned on a surface of the expandable member. The energy delivery device has a configuration that provides sufficient energy delivery to create lesions in the interior of the sphincter. When the expandable member is removed from the sphincter, the sphincter returns to its closed or contracted configuration.
Abstract:
A device for introducing a catheter into a vessel through a puncture in a vessel and for sealing the puncture. The device includes an elongated body having a proximal end and a distal end sized to be positioned within a tissue site which includes the puncture. The elongated body includes a utility lumen sized to allow a catheter to be delivered through the utility lumen. The utility lumen is positioned within the elongated body so positioning the elongated body within the tissue site allows a catheter delivered through the utility lumen to enter the vessel. The elongated body also includes a closure lumen having an entrance port. A closure composition can be delivered through the entrance port into the closure lumen. The closure lumen also includes an exit port adjacent the distal end of the elongated body. The closure composition delivered into the closure lumen can be delivered through the exit port to the tissue site adjacent the puncture.
Abstract:
The invention comprises a method and apparatus for treatment of a body part. More particularly, a method and apparatus for heat treatment of tissue using a catheter inserted into a body part is described along with means for positioning the catheter and means for positioning a set of electrodes relative to a tissue sample for treatment. Still more particularly, radio frequency energy at about 400 to 500 kilohertz is used to provide heat for the tissue treatment.
Abstract:
A multiple antenna ablation apparatus includes an electromagnetic energy source, a trocar including a distal end, and a hollow lumen extending along a longitudinal axis of the trocar, and a multiple antenna ablation device with three or more antennas. The antennas are initially positioned in the trocar lumen as the trocar is introduced through tissue. At a selected tissue site the antennas are deployable from the trocar lumen in a lateral direction relative to the longitudinal axis. Each of the deployed antennas has an electromagnetic energy delivery surface of sufficient size to, (i) create a volumetric ablation between the deployed antennas, and (ii) the volumetric ablation is achieved without impeding out any of the deployed antennas when 5 to 200 watts of electromagnetic energy is delivered from the electromagnetic energy source to the multiple antenna ablation device. At least one cable couples the multiple antenna ablation device to the electromagnetic energy source.
Abstract:
A device for the ablation of tissue for use with the fingers of a human hand and a radio frequency power supply and controller providing a source of radio frequency energy and controls for controlling the application of radio frequency energy to the device comprising a handle sized so that is adapted to be grasped and supported by the human hand and having proximal and distal extremities. A single conductive needle formed of a conducting material is disposed in the distal extremity of the handle. An edge card is mounted in the handle and has edge mounted contacts with circuitry connected thereto. An edge mount board connector is mounted in the handle and is removably secured to the edge mounted contacts of the edge card. A cable is connected to the edge mount connector and extends from the proximal extremity of the handle and is adapted to be coupled to the radiofrequency power supply and controller. A second printed circuit board is mounted in the handle in a spaced-apart position from the edge card. A flex cable having conductive leads carried thereby extends between the edge card and the printed circuit board and is physically and electrically connected to the edge card. The proximal extremity of the needle is secured to the printed circuit board and makes electrical connections therewith.
Abstract:
The invention provides a method and system for treating disorders of the genito-urinary tract and other disorders in other parts of the body. A particular treatment can include one or more of, or some combination of ablation, nerve modulation, three-dimensional tissue shaping, drug delivery, mapping, stimulating, shrinking (by creation of a pattern of thermal lesions) and reducing strain on structures by altering the geometry thereof and providing bulk to particularly defined regions. The particular body structures or tissues can include one or more of, or some combination of regions, including the bladder, esophagus, vagina, penis, larynx, pharynx, aortic arch, abdominal aorta, thoracic aorta, large intestine, small intestine, sinus, auditory canal, uterus, vas deferens, trachea and all associated sphincters. In one aspect of the invention, a catheter is deployed in the body. It may enter the body via a natural orifice, a stoma, or a surgically created opening that is made for the purpose of inserting the catheter. Insertion may be facilitated with the use of a guide wire or a generic support structure or visualization apparatus. In second aspect of the invention, the treatment can include application of energy and substances to effect changes in the target tissue. Types of energy that can be applied include radiofrequency, laser, microwave, infrared waves, ultrasound or some combination thereof. Types of substances that can be applied include pharmaceutical agents such as analgesics, antibiotics and anti-inflammatory drugs, bulking agents such as biologically nonreactive particles, cooling fluids or dessicants such as liquid nitrogen for use in cryo-based treatments.
Abstract:
A cell necrosis apparatus includes an elongated member with a longitudinal axis. The elongated member being is configured to be positionable and maneuverable in an oral cavity. First and second energy delivery devices are positioned at a distal portion of the elongated member. Each of the first and second energy delivery devices is laterally offset from the longitudinal axis. In another embodiment, the apparatus can also include a template with a tissue penetrating introducer and a lumen. The energy delivery device is configured to be advancable from the first lumen into a tonsil intratonsil lymphoid stroma.