Abstract:
In a field emission type image display panel, plural cathode electrodes are formed in a stripe shape on a first substrate and each having emitters for field emission. Cathode lead-out electrodes supply signals to the cathode electrodes. Plural patch-like gate electrodes are arranged in a matrix form over the plural cathode electrodes and insulated from the plural cathode electrodes. Gate lead-out electrodes are led out along spaces between adjacent two rows in rows formed of patch-like gate electrodes substantially perpendicular to the cathode electrodes, each of the gate lead-out electrodes being connected to the patch-like gate electrodes in adjacent two rows in a zigzag arrangement and every other gate electrode. A second substrate is spaced from the first substrate a predetermined distance apart. Plural patch-like anode electrodes are arranged on the second substrate, the plural anode electrodes respectively confronting the plural patch-like gate electrodes in a matrix form. Fluorescent materials are formed over the plural patch-like anode electrodes, for displaying an image. Anode electrodes are led out along spaces between adjacent two rows of anode electrodes substantially perpendicular to the cathode electrodes, each of the anode lead-out electrodes being connected to anode electrodes in adjacent two rows in a zigzag arrangement and every other anode electrode.
Abstract:
An electron emission cathode includes: an n-type semiconductor film including diamond particles partially projecting from a surface of the n-type semiconductor film; and an anode opposing the n-type semiconductor film with a vacuum interposed therebetween. Electrons are emitted by applying a voltage between the anode and the n-type semiconductor film.
Abstract:
There is provided a cold cathode including a substrate, a plurality of electron emitting electrodes formed on the substrate, a first insulating layer formed on the substrate and formed with a plurality of first cavities in which the electron emitting electrodes are disposed, a gate electrode formed on the first insulating layer and formed with a plurality of first openings which are in communication with the first cavities, a second insulating layer formed on the gate electrode and formed with a plurality of second cavities which are in communication with the first openings, and a focusing electrode formed on the second insulating layer and formed with a plurality of second openings which are in communication with the second cavities. At least one of central axes of the second openings and central axes of the first openings is eccentric with central axes of the electron emitting electrodes. Eccentricity between at least one of the central axes of the second openings and the central axes of the first openings, and the central axes of the electron emitting electrodes is oriented outwardly, and a degree of the eccentricity is set greater at a location more remote from a centrally located electron emitting electrode.
Abstract:
A current controlled field emission display includes a current control circuit coupled to respective emitters to control current flow through the emitters. The control circuit includes a limiting resistor to limit the current flow to the emitters. To compensate for temperature or other variations in the resistance of the limiting resistor, the control circuit also includes a compensating resistor that produces an offsetting change in a driving voltage within the control circuit. As the resistance of the limiting resistance drops, which would allow the current through the emitter to increase, the compensating resistor produces an offsetting voltage drop that increases the voltage across the limiting resistance to maintain the current through the limiting resistance constant. The offsetting current reduction thus reduces the overall effect of temperature on current flowing through the emitter set.
Abstract:
Fabrication of an electron-emitting device entails distributing electron-emissive carbon-containing particles (22) over a non-insulating region (12). The particles can be made electron emissive after the particle distributing step. Particle bonding material (24) is typically provided to bond the particles to the non-insulating region. The particle bonding material can include carbide formed by heating or/and can be created by modifying a layer (32) provided between the non-insulating region and the particles. In one embodiment, the particles emit electrons primarily from graphite or/and amorphous carbon regions. In another embodiment, the particles are made electron-emissive prior to the particle distributing step.
Abstract:
Process for the production of a field effect electron source and source obtained by said process, application to display means by cathodoluminescence. On an insulating substrate (2), said source comprises at least one cathode conductor (4), an insulating layer (6) covering the latter, at least one grid (8) formed on the insulating layer, holes (10) being formed through said grid and the insulating layer, and microtips (12) made from an electron emitting, metallic material, formed in said holes and covered with a deposit (13) of carbon diamond or diamond like carbon particles formed by electrophoresis or by joint electrochemical deposition of metal and carbon diamond or diamond like carbon.
Abstract:
A field effect electron source includes a grid electrode formed over an insulating layer that covers a cathode electrode formed on an insulating substrate. Holes are provided in the grid electrode-insulating layer structure, the holes extending to the cathode electrode formed on the insulating substrate. Electron emitting microheaps are formed within the holes above the exposed portions of the cathode electrode on the substrate. These microheaps each include at least a macropile of carbon diamond or diamond like carbon powder grains surrounded by the sidewalls of the hole.
Abstract:
Applicants have discovered methods for making, treating and using diamonds which substantially enhance their capability for low voltage emission. Specifically, applicants have discovered that defect-rich diamonds--diamonds grown or treated to increase the concentration of defects--have enhanced properties of low voltage emission. Defect-rich diamonds are characterized in Raman spectroscopy by a diamond peak at 1332 cm.sup.-1 broadened by a full width at half maximum .DELTA.K in the range 5-15 cm.sup.-1 (and preferably 7-11 cm.sup.-1). Such defect-rich diamonds can emit electron current densities of 0.1 mA/mm.sup.2 or more at a low applied field of 25 V/.mu.m or less. Particularly advantageous structures use such diamonds in an array of islands or particles each less than 10 .mu.m in diameter at fields of 15 V/.mu.m or less.
Abstract:
A gated filament structure for a field emission display includes a plurality of filaments. Included is a substrate, an insulating layer positioned adjacent to the substrate, and a metal gate layer position adjacent to the insulating layer. The metal gate layer has a plurality of gates, the metal gate layer having an average thickness "s" and a top metal gate layer planar surface that is substantially parallel to a bottom metal gate layer planar surface. The metal gate layer includes a plurality of apertures extending through the gates. Each aperture has an average width "r" along a bottom planar surface of the aperture. Each aperture defines a midpoint plane positioned parallel to and equally distant from the top metal gate layer planar surface and the bottom metal gate layer planar surface. A plurality of filaments are individually positioned in an aperture. Each filament has a filament axis. The intersection of the filament axis and the midpoint plane defines a point "O". Each filament includes a filament tip terminating at a point "A". A majority of all filament tips of the display have a length "L" between each filament tip at point A and point O along the filament axis where, L.ltoreq.(s+r)/2.
Abstract:
A novel and advantageous cathode structure for a field emission display apparatus is disclosed. A given pixel comprises a multiplicity of spaced apart emitter bodies on a support. A given emitter body comprises diamond and/or rare earth boride, and has a relatively sharp geometrical feature that facilitates electron emission from the emitter body. By way of example, the emitter body comprises diamond bodies grown on a support, or it comprises a pre-existing diamond particle that was placed on the support. Such emitter bodies generally can be provided easily and at low cost, and typically have naturally occurring sharp geometrical features such as points and edges. We have also discovered that appropriately grown rare earth boride films of thickness 30 nm or less may substantially improve electron emission from emitter bodies, and some preferred embodiments of the invention comprise a cathode structure that comprises a thin layer of, e.g., LaB.sub.6 on the emitter bodies. Methods of making cathodes according to the invention are also disclosed.