Abstract:
A method of forming a BiCMOS integrated circuit having a raised extrinsic base is provided. The method includes first forming a polysilicon layer atop a surface of a gate dielectric which is located atop a substrate having device areas for forming at least one bipolar transistor and device areas for forming at least one complementary metal oxide semiconductor (CMOS) transistor. The polysilicon layer is then patterned to provide a sacrificial polysilicon layer over the device areas for forming the at least one bipolar transistor and its surrounding areas, while simultaneously providing at least one gate conductor in the device areas for forming at least one CMOS transistor. At least one pair of spacers are then formed about each of the at least one gate conductor and then a portion of the sacrificial polysilicon layer over the bipolar device areas are selectively removed to provide at least one opening in the bipolar device area. At least one bipolar transistor having a raised extrinsic base is then formed in the at least one opening.
Abstract:
A method and apparatus for depositing single crystal, epitaxial films of silicon carbon and silicon germanium carbon on a plurality of substrates in a hot wall, isothermal UHV-CVD system is described. In particular, a multiple wafer low temperature growth technique in the range from 350° C. to 750° C. is described for incorporating carbon epitaxially in Si and SiGe films with very abrupt and well defined junctions, but without any associated oxygen background contamination. Preferably, these epitaxial SiC and SiGeC films are in-situ doped p- or n-type and with the presence of low concentration of carbon
Abstract:
S-parameter data is measured on an embedded device test structure, an open dummy, and a short dummy. A 4-port network of the pad set parasitics of the embedded device test structure is modeled by a parameterized netlist containing a lumped element network having at least one parameterized lumped element. The S-parameter data across a range of measurement frequencies is fitted with the parametrized netlist employing the at least one parameterized lumped element as at least one fitting parameter for the S-parameter data. Thus, the fitting method is a multi-frequency fitting for the at least one parameterized lumped element. A 4-port Y-parameter (admittance parameter) is obtained from the fitted parameterized netlist. The Y-parameter of the device under test is obtained from the measured admittance of the embedded device test structure and the calculated 4-port Y parameter.
Abstract:
A SiGe bipolar transistor containing substantially no dislocation defects present between the emitter and collector region and a method of forming the same are provided. The SiGe bipolar transistor includes a collector region of a first conductivity type; a SiGe base region formed on a portion of said collector region; and an emitter region of said first conductivity type formed over a portion of said base region, wherein said collector region and said base region include carbon continuously therein. The SiGe base region is further doped with boron.
Abstract:
A field effect transistor is provided which includes a contiguous single-crystal semiconductor region in which a source region, a channel region and a drain region are disposed. The channel region has an edge in common with the source region as a source edge, and the channel region further has an edge in common with the drain region as a drain edge. A gate conductor overlies the channel region. The field effect transistor further includes a structure which applies a stress at a first magnitude to only one of the source edge and the drain edge while applying the stress at no greater than a second magnitude to another one of the source edge and the drain edge, wherein the second magnitude has a value ranging from zero to about half the first magnitude. In a particular embodiment, the stress is applied at the first magnitude to the source edge while the zero or lower magnitude stress is applied to the drain edge. In another embodiment, the stress is applied at the first magnitude to the drain edge while the zero or lower magnitude stress is applied to the drain edge.
Abstract:
A raised extrinsic base, silicon germanium (SiGe) heterojunction bipolar transistor (HBT), and a method of making the same is disclosed herein. The heterojunction bipolar transistor includes a substrate, a silicon germanium layer formed on the substrate, a collector layer formed on the substrate, a raised extrinsic base layer formed on the silicon germanium layer, and an emitter layer formed on the silicon germanium layer. The silicon germanium layer forms a heterojunction between the emitter layer and the raised extrinsic base layer. The bipolar transistor further includes a base electrode formed on a portion of the raised extrinsic base layer, a collector electrode formed on a portion of the collector layer, and an emitter electrode formed on a portion of the emitter layer. Thus, the heterojunction bipolar transistor includes a self-aligned raised extrinsic base, a minimal junction depth, and minimal interstitial defects influencing the base width, all being formed with minimal thermal processing. The heterojunction bipolar transistor simultaneously improves three factors that affect the speed and performance of bipolar transistors: base width, base resistance, and base-collector capacitance.
Abstract:
A method and apparatus for depositing single crystal, epitaxial films of silicon carbon and silicon germanium carbon on a plurality of substrates in a hot wall, isothermal UHV-CVD system is described. In particular, a multiple wafer low temperature growth technique in the range from 350° C. to 750° C. is described for incorporating carbon epitaxially in Si and SiGe films with very abrupt and well defined junctions, but without any associated oxygen background contamination. Preferably, these epitaxial SiC and SiGeC films are in-situ doped p- or n-type and with the presence of low concentration of carbon
Abstract:
A SiGe bipolar transistor containing substantially no dislocation defects present between the emitter and collector region and a method of forming the same are provided. The SiGe bipolar transistor includes a collector region of a first conductivity type; a SiGe base region formed on a portion of said collector region; and an emitter region of said first conductivity type formed over a portion of said base region, wherein said collector region and said base region include carbon continuously therein. The SiGe base region is further doped with boron.
Abstract:
An oxide etch process is described which may be used for emitter and base preparation in bipolar SiGe devices. The low temperature process employed produces electrical insulation between the emitter and base by a COR etch which preserves insulating TEOS glass. The insulating TEOS glass provides reduced capacitance and helps to achieve high speed. An apparatus is also described for practicing the disclosed process.
Abstract:
We provide a method of doping an Si or SiGe film with carbon or boron. By reducing the silicon precursor pressure, heavily-doped films may be obtained. A single dopant source may be used. The doped Si and SiGe films are of suitable quality for use in a transistor such as an HBT.