摘要:
An oxide etch process is described which may be used for emitter and base preparation in bipolar SiGe devices. The low temperature process employed produces electrical insulation between the emitter and base by a COR etch which preserves insulating TEOS glass. The insulating TEOS glass provides reduced capacitance and helps to achieve high speed. An apparatus is also described for practicing the disclosed process.
摘要:
A method of forming a BiCMOS integrated circuit having a raised extrinsic base is provided. The method includes first forming a polysilicon layer atop a surface of a gate dielectric which is located atop a substrate having device areas for forming at least one bipolar transistor and device areas for forming at least one complementary metal oxide semiconductor (CMOS) transistor. The polysilicon layer is then patterned to provide a sacrificial polysilicon layer over the device areas for forming the at least one bipolar transistor and its surrounding areas, while simultaneously providing at least one gate conductor in the device areas for forming at least one CMOS transistor. At least one pair of spacers are then formed about each of the at least one gate conductor and then a portion of the sacrificial polysilicon layer over the bipolar device areas are selectively removed to provide at least one opening in the bipolar device area. At least one bipolar transistor having a raised extrinsic base is then formed in the at least one opening.
摘要:
A raised extrinsic base, silicon germanium (SiGe) heterojunction bipolar transistor (HBT), and a method of making the same is disclosed herein. The heterojunction bipolar transistor includes a substrate, a silicon germanium layer formed on the substrate, a collector layer formed on the substrate, a raised extrinsic base layer formed on the silicon germanium layer, and an emitter layer formed on the silicon germanium layer. The silicon germanium layer forms a heterojunction between the emitter layer and the raised extrinsic base layer. The bipolar transistor further includes a base electrode formed on a portion of the raised extrinsic base layer, a collector electrode formed on a portion of the collector layer, and an emitter electrode formed on a portion of the emitter layer. Thus, the heterojunction bipolar transistor includes a self-aligned raised extrinsic base, a minimal junction depth, and minimal interstitial defects influencing the base width, all being formed with minimal thermal processing. The heterojunction bipolar transistor simultaneously improves three factors that affect the speed and performance of bipolar transistors: base width, base resistance, and base-collector capacitance.
摘要:
A method of fabricating micro-electromechanical switches (MEMS) integrated with conventional semiconductor interconnect levels, using compatible processes and materials is described. The method is based upon fabricating a capacitive switch that is easily modified to produce various configurations for contact switching and any number of metal-dielectric-metal switches. The process starts with a copper damascene interconnect layer, made of metal conductors inlaid in a dielectric. All or portions of the copper interconnects are recessed to a degree sufficient to provide a capacitive air gap when the switch is in the closed state, as well as provide space for a protective layer of, e.g., Ta/TaN. The metal structures defined within the area specified for the switch act as actuator electrodes to pull down the movable beam and provide one or more paths for the switched signal to traverse. The advantage of an air gap is that air is not subject to charge storage or trapping that can cause reliability and voltage drift problems. Instead of recessing the electrodes to provide a gap, one may just add dielectric on or around the electrode. The next layer is another dielectric layer which is deposited to the desired thickness of the gap formed between the lower electrodes and the moveable beam that forms the switching device. Vias are fabricated through this dielectric to provide connections between the metal interconnect layer and the next metal layer which will also contain the switchable beam. The via layer is then patterned and etched to provide a cavity area which contains the lower activation electrodes as well as the signal paths. The cavity is then back-filled with a sacrificial release material. This release material is then planarized with the top of the dielectric, thereby providing a planar surface upon which the beam layer is constructed.
摘要:
A CMOS integrated circuit with field isolation including an NFET(s) having an isolated P-well, wherein the isolated P-well is adjusted so that it does not extend below the field isolation (e.g., STI) and the width and doping of the P-well and an underlying buried N-well is adjusted so that the depletion regions of the source/drain (S-D) diode and also the well-diode just meet (merge) without overlap in the P-well. The semiconductor device obtains bipolar effect and reduced junction capacitance in a bulk single-crystal technology. A method for fabricating the semiconductor device if also provided.
摘要:
A method of controlling the interfacial oxygen concentration of a monocrystalline/polycrystalline emitter includes the steps of: passivating the monocrystalline silicon surface by immersing the wafer in a diluted HF acid solution; transferring the wafer into a high vacuum environment; heating the wafer to between 400.degree. and 700.degree. C.; exposing the monocrystalline silicon surface to a gas having a partial pressure of oxygen of between 10.sup.-5 to 1 Torr for between 1 and 100 minutes; and, depositing polysilicon onto the monocrystalline silicon surface.
摘要:
A method of improving the tolerance of a back-end-of-the-line (BEOL) thin film resistor is provided. Specifically, the method of the present invention includes an anodization step which is capable of converting a portion of base resistor film into an anodized region. The anodized resistor thus formed has a sheet resistivity that is higher than that of the base resistor film.
摘要:
A method of fabricating an encapsulated micro electro-mechanical system (MEMS) and making of same that includes forming a dielectric layer, patterning an upper surface of the dielectric layer to form a trench, forming a release material within the trench, patterning an upper surface of the release material to form another trench, forming a first encapsulating layer that includes sidewalls within the another trench, forming a core layer within the first encapsulating layer, and forming a second encapsulating layer above the core layer, where the second encapsulating layer is connected to the sidewalls of the first encapsulating layer. Alternatively, the method includes forming a multilayer MEMS structure by photomasking processes to form a first metal layer, a second layer including a dielectric layer and a second metal layer, and a third metal layer. The core layer and the encapsulating layers are made of materials with complementary electrical, mechanical and/or magnetic properties.
摘要:
A method of forming a BiCMOS integrated circuit is provided which comprises the steps of: (a) forming a first portion of a bipolar device in first regions of a substrate; (b) forming a first protective layer over said first regions to protect said first portion of said bipolar devices; (c) forming field effect transistor devices in second regions of said substrate; (d) forming a second protective layer over said second regions of said substrate to protect said field effect transistor devices; (e) removing said first protective layer; (f) forming a second portion of said bipolar devices in said first regions of said substrate; and (g) removing said second protective layer.
摘要:
High frequency performance of transistor designs is enhanced and manufacturing yield improved by removing and reducing sources of parasitic capacitance through combinations of processes from different technologies. After formation of collector, base and emitter regions on a substrate and attachment of a second substrate, the original substrate is wholly or partially removed, the inactive collector area is removed or rendered semi-insulating and wiring and contacts are made from the original back side of the chip. Dielectric material used in the manufacturing process can be removed to further reduce capacitance. The high frequency transistors can be bonded to CMOS chips or wafers to form BICMOS chips.