Abstract:
A new method of depositing PE-oxide or PE-TEOS. An HDP-oxide is provided over a pattern of polysilicon. An etch back is performed to the deposited HDP-oxide, a layer of plasma-enhanced SiN is deposited. This PE-SiN is etched back leaving SiN spacers on the sidewalls of the poly pattern, further leaving a deposition of HDP-oxide on the top surface of the poly pattern. The profile of the holes within the poly pattern in such that the final layer of PE-oxide or PE-TEOS is deposited without resulting in the formation of keyholes in this latter layer.
Abstract:
A method for reducing peeling of a cross-linked polymer passivation layer in a solder bump formation process including providing a multi-level semiconductor device formed on a semiconductor process wafer having an uppermost surface comprising a metal bonding pad in electrical communication with underlying device levels; forming a layer of resinous pre-cursor polymeric material over the process surface said resinous polymeric material having a glass transition temperature (Tg) upon curing; subjecting the semiconductor process wafer to a pre-curing thermal treatment temperature below Tg for a period of time; and, subjecting the semiconductor process wafer to at least one subsequent thermal treatment temperature above Tg for a period of time to form an uppermost passivation layer.
Abstract:
A method for reducing peeling of a cross-linked polymer passivation layer in a solder bump formation process including providing a multi-level semiconductor device formed on a semiconductor process wafer having an uppermost surface comprising a metal bonding pad in electrical communication with underlying device levels; forming a layer of resinous pre-cursor polymeric material over the process surface said resinous polymeric material having a glass transition temperature (Tg) upon curing; subjecting the semiconductor process wafer to a pre-curing thermal treatment temperature below Tg for a period of time; and, subjecting the semiconductor process wafer to at least one subsequent thermal treatment temperature above Tg for a period of time to form an uppermost passivation layer.
Abstract:
A method for developing a photo-exposed photoresist layer to improve a critical dimension uniformity (CDU) for a semiconductor device manufacturing process including providing a semiconductor process wafer having a process surface comprising a photoresist layer photo-exposed according to an exposure pattern; dispensing a predetermined amount of developer solution over a stationary semiconductor process wafer to form a film of developer solution covering the process surface; partially developing the exposed portions of the photoresist layer comprising maintaining the semiconductor process wafer in a stationary position for a predetermined time period; rotating the semiconductor process wafer for a predetermined period of time to remove a portion of the developer solution; and, repeating the steps of dispensing, partially developing, and rotating, for a predetermined number of repetition cycles to complete a photoresist development process.
Abstract:
Removing photoresist from alignment marks on a semiconductor wafer using a wafer edge exposure process is disclosed. The alignment marks on the wafer are covered by photoresist used in conjunction with semiconductor processing of one or more layers deposited on the semiconductor wafer. One or more parts of the edge of the wafer are exposed to remove the photoresist from these parts and thus reveal alignment marks on the wafer. The exposure of the one or more parts of the wafer is accomplished without performing a photolithographic clear out process. Rather, a wafer edge exposure (WEE) process is inventively utilized. Once the WEE process is performed, subsequent layers may be deposited by aligning them using the revealed alignment marks.
Abstract:
A process for fabricating a crown shaped, capacitor structure, in a SAC opening, featuring a silicon nitride spacer, located on the walls of a bottom portion of the SAC opening, has been developed. The process features forming a SAC opening in a thick silicon oxide layer, then repairing, or filling, seams or voids, that may be present in the thick silicon oxide layer, at the perimeter of the SAC opening, via formation of a silicon nitride spacer on the sides of the SAC opening. Subsequent processing features: the isotropic removal of a top portion of the silicon nitride spacer; the formation of a polysilicon storage node structure, in the SAC opening; and the recessing of a top portion of the thick silicon oxide layer, resulting in exposure of additional polysilicon storage node, surface area.
Abstract:
A new method is provided to create a gradated dopant concentration in the contact plug of DRAM devices whereby a high dopant concentration is present at the bottom of the plug and a low dopant concentration is present at the top of the plug. Two layers of dielectric are deposited; the upper layer serves as a layer to adjust the dopant concentration in the lower layer. This adjustment is done by Rapid Thermal anneal of both layers of dielectric. After the dopant concentration has been adjusted, the upper layer of dielectric is removed and the upper section of the contact node is formed using lightly doped poly. The high dopant concentration at the bottom of the contact plug results in low contact resistance between the plug and the underlying silicon substrate. A low dopant concentration at the top surface of the contact plug results in low oxidation of the surface of the plug.
Abstract:
A process for reducing the aspect ratio, for narrow diameter contact holes, formed in thick insulator layers, used to integrate logic and DRAM memory devices, on the same semiconductor chip, has been developed. The process of reducing the aspect ratio, of these contact holes, features initially forming, via patterning procedures, lower, narrow diameter contact holes, to active device regions, in the logic area, while also forming self-aligned contact openings to source/drain regions in the DRAM memory region. After forming tungsten structures, in the lower, narrow diameter contact holes, polycide bitline, and polysilicon capacitor structures, are formed in the DRAM memory region, via deposition, and patterning, of upper level insulator layers, and polysilicon and polycide conductive layers. Upper, narrow diameter openings, are then formed in the upper level insulator layers, exposing the top surface of tungsten structures, located in the lower, narrow diameter contact holes. The formation of upper tungsten structures, in the upper, narrow diameter contact openings completes the process of forming metal structures, in narrow diameter openings, with reduced aspect ratios, achieved via a two stage contact hole opening, and a two stage metal filling procedure.
Abstract:
A process for forming a DRAM, cylindrical shaped, stacked capacitor structure, located under a bit line structure, has been developed. The process features defining a polysilicon cell plate structure, during the same photolithotgraphic and anisotropic etching procedures, used to open a bit line contact hole. The bit line contact hole is formed by first opening a top portion of the bit line contact hole, using a photoresist shape as an etch mask, and after the formation of silicon nitride spacers, on the sides of the top portion of the bit line contact hole, the bottom portion of the bit line contact hole is opened, using silicon nitride as an etch mask.
Abstract:
A method for forming a self aligned contact wherein a dielectric layer is formed directly on a conductive structure according the present invention. A semiconductor structure having a polysilicon conductive structure (such as a bit line) thereon is provided. A contact area is located on the semiconductor structure adjacent to the conductive structure. A dielectric layer, preferably composed of silicon oxide is formed over the conductive structure and the semiconductor structure. A top hard mask layer is formed over the dielectric layer. A contact opening is formed in the top hard mask layer and the dielectric layer using an etch selective to oxide over polysilicon, thereby exposing the contact region of the semiconductor structure adjacent to the conductive structure without etching through the conductive structure. A first lining dielectric layer, a second lining dielectric layer, and a third lining dielectric layer are sequentially deposited on the sidewalls of the contact opening and on the contact area of the semiconductor structure. The first and third lining dielectric layers are preferably composed of silicon dioxide and the third lining dielectric layer is preferably composed of silicon nitride. The third lining dielectric layer is anisotropically etched forming a second contact opening in the second lining dielectric layer over the contact area while leaving a spacer on the sidewall of the contact opening. The second lining dielectric layer and the first lining dielectric layer are anisotropically etched to expose the contact area of the semiconductor structure, while the spacer prevents erosion of the second lining dielectric layer and the first lining dielectric layer on the sidewall of the contact opening. The remaining spacer is removed, preferably using a buffered HF dip. A polysilicon contact layer is formed on the second lining dielectric layer and on the contact area of the semiconductor structure.