摘要:
A super low profile package with stacked dies comprises a substrate, a heat spreader, a first die, a second die, a molding compound, and a number of solder balls. The substrate has a cavity, a top surface and a bottom surface opposite to the top surface. The heat spreader is connected to the bottom surface of the substrate, and a portion of the heat spreader opposite to the cavity serves as a die pad. The first die seated in the cavity is attached to the die pad while the second die seated in the cavity is attached to the first die, and both dies are wire-bonded to the substrate for electrical connection. The molding compound fills the cavity and encapsulates the first die, the second die, the heat spreader, and part of the bottom surface of the substrate. Numerous solder balls are attached to the bottom surface of the substrate. The benefits resulting from the package of the invention include a reduction of profile, a simple manufacturing process, and a low prime cost.
摘要:
A packaging structure comprises a substrate, a plurality of semiconductor chips contiguously mounted into a plurality of stacked semiconductor chip sets, a plurality of supporting members, a plurality of adhesive layers, a plurality of wires and a molding compound. Each of the semiconductor chip sets comprises at least a semiconductor chip, each semiconductor chip having plurality of bonding pads. The size deviation between the semiconductor chip sets is less than 0.3 mm. The supporting members separate from one another the semiconductor chip sets stacked above the substrate. The adhesive layers bond the substrate, the supporting members and the semiconductor chips to one another. The wires connect the semiconductor chips to one another and to the substrate. The molding compound encapsulates the substrate, the semiconductor chips, the supporting members, and the adhesive layers.
摘要:
A flip-chip semiconductor package with a lead frame and a method for fabricating the same are provided. The lead frame has a plurality of leads, each lead having an upper surface, a lower surface, and an inner end directed toward the center of the lead frame. A recessed portion is formed on the upper surface of the inner end of each lead, making the inner end shaped as a stepped structure. The depth of the recessed portion is equal to a height of a reflow-collapsed solder bump that is for electrically connecting a chip to the lead. At least one chip is electrically connected to the leads in a flip-chip manner via a plurality of solder bumps bonded to the recessed portions. An encapsulation body is formed to encapsulate the lead frame, chip and solder bumps, with the lower surfaces of the leads being exposed from the encapsulation body.
摘要:
A stacked-die package structure comprises a carrier, dies, spacers, adhesive layers, conductive lines, a mold compound, and solder balls. The carrier has an upper surface and a back surface opposite to the upper surface. The dies substantially having the same sizes are stacked one by one on the upper surface of the carrier, and a number of bonding pads are located around each die. The spacers are located between two adjacent dies. Adhesive layers located between the spacers, the dies, and the carrier for adhering layers therebetween. The conducting lines are respectively electrically connected between each of the bonding pads of the dies and the carrier. And the mold compound is formed over the upper surface of the carrier, for encapsulating the spacers, the dies and the adhesive layers. A substrate with solder balls or a lead frame having pins is suitable for serving as the carrier.
摘要:
A QFN semiconductor package and a fabrication method thereof are proposed, wherein a lead frame having a plurality of leads is adopted, and each lead is formed at its inner end with a protruding portion. A wire bonding region and a bump attach region are respectively defined on opposite surfaces of the protruding portion, and staggered in position. This allows a force applied from a wire bonder to the wire bonding regions not to adversely affect solder bumps implanted on the bump attach regions, so that the solder bumps can be structurally assured without cracking. Moreover, the wire bonding regions spaced apart from the bump attach regions can be prevented from being contaminated by an etching solution used in solder bump implantation, so that wire bonding quality can be well maintained.
摘要:
A flip chip type quad flat non-leaded package, comprising: a plurality of leads each having a first surface and a second surface opposite to the first surface; a die having an active surface and a backside opposite the active surface, wherein the active surface has a plurality of bonding pads, each having a bump, and wherein each bump is connected to a first surface of one of the leads respectively; and a molding compound encapsulating the leads and the die, exposing second surfaces of the leads.
摘要:
The present invention is characterized by replacing solder balls with cylindrical terminals in an IC package where at least a chip is located on the same side of the substrate of the IC package as the solder balls are. Due to the larger length of the cylindrical terminals which are located on the same side of the substrate of the IC package as at least a chip is, at least a chip with relatively thick size can be accommodated in the IC package provided by the present invention, without need of increasing terminal pitch (such as the ball pitch in a conventional BGA package). The accommodation of relatively thick chip in the IC package provided by the present invention leads to elimination or significant reduction of cost of back grinding of the chip, and to significant improvement on the failure rate resulting from the thinness of the chip in a conventional IC package, while without need of augmenting the size of the substrate of the IC package as a result that the terminal pitch based on the present invention needs not be increased.
摘要:
A semiconductor package with a heat dissipating structure is proposed, in which the heat dissipating structure is precisely positioned on a substrate, in a manner that a plurality of solder balls self-align with ball pads formed on the substrate, and support a heat sink to be positioned above a semiconductor chip mounted on the substrate. This therefore makes the heat sink closely abut a molding cavity of an encapsulating mold in a molding process, and prevents resin flash from occurring on the heat sink, so that a surface of the heat sink can be directly exposed to the atmosphere for improving heat dissipating efficiency. Moreover, the solder balls characterized in softness deform in response to a pressure generated by the encapsulating mold during molding. Therefore, the substrate can be protected from being damaged by the pressure, and thus quality of the semiconductor package can be assured.
摘要:
A flip-chip semiconductor package with a lead frame and a method for fabricating the same are provided. The lead frame has a plurality of leads, each lead having an upper surface, a lower surface, and an inner end directed toward the center of the lead frame. A recessed portion is formed on the upper surface of the inner end of each lead, making the inner end shaped as a stepped structure. The depth of the recessed portion is equal to a height of a reflow-collapsed solder bump that is for electrically connecting a chip to the lead. At least one chip is electrically connected to the leads in a flip-chip manner via a plurality of solder bumps bonded to the recessed portions. An encapsulation body is formed to encapsulate the lead frame, chip and solder bumps, with the lower surfaces of the leads being exposed from the encapsulation body.
摘要:
A method is proposed for fabricating a TFBGA (Thin & Fine Ball-Grid Array) package with embedded heat spreader. Conventionally, since an individual TFBGA package is quite small in size, it would be highly difficult to incorporate an embedded heat spreader therein. As a solution to this problem, the proposed method utilizes a single substrate predefined with a plurality of package sites, and further utilizes a heat-spreader frame including an integrally-formed matrix of heat spreaders each corresponding to one of the package sites on the substrate. A batch of semiconductor chips are then mounted on the respective package sites on the substrate. During the encapsulation process, a single continuous encapsulation body is formed to encapsulate the entire heat-spreader frame and all the semiconductor chips. After ball implantation, a singulation process is performed to cut apart the encapsulation body into individual package units, each serving as the intended TFBGA package. In the foregoing process, since the entirety of the heat-spreader frame is relatively large in size as compared to the size of an individual TFBGA package, it can be easily handled, so that the embedding of a heat spreader in each package unit can be easily carried out.