Abstract:
Disclosed herein is a light emitting device with a silicone lens. The light emitting device comprises a heat sink. A package body surrounds at least a portion of the heat sink, and a light emitting diode is mounted on the heat sink. Meanwhile, the light emitting diode is covered with a silicone lens molded on the package body. The molded silicone lens can be employed to prevent reduction in light extraction efficiency due to poor bonding between lens and encapsulant.
Abstract:
A luminescent material is disclosed. The luminescent material may include a first compound having a host lattice comprising first ions and oxygen. A first portion of the first ions may be substituted by copper ions. In one embodiment, the host lattice may include silicon, the copper ions may be divalent copper ions and the first compound may have an Olivine crystal structure, β-K0.2SO4 crystal structure, a trigonal Glaserite (K3Na(SO4)2) or monoclinic Merwinite crystal structure, a tetragonal Ackermanite crystal structure, a tetragonal crystal structure or an orthorhombic crystal structure. In another embodiment, the copper ions do not act as luminescent ions upon excitation with the ultraviolet or visible light.
Abstract translation:公开了一种发光材料。 发光材料可以包括具有包含第一离子和氧的主晶格的第一化合物。 第一离子的第一部分可以被铜离子取代。 在一个实施方案中,主晶格可以包括硅,铜离子可以是二价铜离子,并且第一化合物可以具有橄榄石晶体结构,KO 2 SO 4晶体结构,三角形镓石(K3Na(SO4)2)或 单斜晶系的Merwinite晶体结构,四方晶系晶体结构,四方晶体结构或正交晶体结构。 在另一个实施方案中,当用紫外线或可见光激发时,铜离子不作为发光离子。
Abstract:
Disclosed is a light emitting device having a plurality of light emitting cells and a package having the same mounted thereon. The light emitting device includes a plurality of light emitting cells which are formed on a substrate and each of which has an N-type semiconductor layer and a P-type semiconductor layer located on a portion of the N-type semiconductor layer. The plurality of light emitting cells are bonded to a submount substrate. Accordingly, heat generated from the light emitting cells can be easily dissipated, so that a thermal load on the light emitting device can be reduced. Meanwhile, since the plurality of light emitting cells are electrically connected using connection electrodes or electrode layers formed on the submount substrate, it is possible to provide light emitting cell arrays connected to each other in series. Further, it is possible to provide a light emitting device capable of being directly driven by an AC power source by connecting the serially connected light emitting cell arrays in reverse parallel to each other.
Abstract:
A light emitting diode (LED) for minimizing crystal defects in an active region and enhancing recombination efficiency of electrons and holes in the active region includes non-polar GaN-based semiconductor layers grown on a non-polar substrate. The semiconductor layers include a non-polar N-type semiconductor layer, a non-polar P-type semiconductor layer, and non-polar active region layers positioned between the N-type semiconductor layer and the P-type semiconductor layer. The non-polar active region layers include a well layer and a barrier layer with a superlattice structure.
Abstract:
A light emitting device includes a plurality of light emitting cells which are formed on a substrate and each of which has an N-type semiconductor layer and a P-type semiconductor layer located on a portion of the N-type semiconductor layer. The plurality of light emitting cells are bonded to a submount substrate. Heat generated from the light emitting cells can be easily dissipated, so that a thermal load on the light emitting device can be reduced. Since the plurality of light emitting cells are electrically connected using connection electrodes or electrode layers formed on the submount substrate, it is possible to provide light emitting cell arrays connected to each other in series. Further, it is possible to provide a light emitting device capable of being directly driven by an AC power source by connecting the serially connected light emitting cell arrays in reverse parallel to each other.
Abstract:
Method for producing a probe for atomic force microscopy with a silicon nitride cantilever and an integrated single crystal silicon tetrahedral tip with high resonant frequencies and low spring constants intended for high speed AFM imaging.
Abstract:
The present invention provides a light emitting device comprising a first light emitting portion that emits white light at a color temperature of 6000K or more and a second light emitting portion that emits white light at a color temperature of 3000K or less, which include light emitting diode chips and phosphors and are independently driven. The present invention has an advantage in that a light emitting device can be diversely applied in a desired atmosphere and use by realizing white light with different light spectrums and color temperatures. Particularly, the present invention has the effect on health by adjusting the wavelength of light or the color temperature according to the circadian rhythm of humans.
Abstract:
A light emitting device can be characterized as including a light emitting diode configured to emit light and a phosphor configured to change a wavelength of the light. The phosphor substantially covers at least a portion of the light emitting diode. The phosphor includes a compound having a host material. Divalent copper ions and oxygen are components of the host material.
Abstract:
Disclosed herein is a light emitting device including one or more light emitting diodes to primarily emit light having different wavelengths in the wavelength range of ultraviolet rays and/or blue light, and a wavelength-conversion means to convert the primary light into secondary light in the visible light wavelength range. The light emitting device of the current invention has a high color temperature of 2000 to 8000 K or 10000 K and a high color rendering index of 90 or more, thus easily realizing desired emission on the color coordinate system. Therefore, the lighting emitting device is applicable to mobile phones, notebook computers, and keypads or backlight units for various electronic products, and, in particular, automobiles and exterior and interior lighting fixtures.
Abstract:
A light emitting device is disclosed. The light emitting device may include a light emitting diode (LED) for emitting light and a phosphor adjacent to the LED. The phosphor may be excitable by light emitted by the LED and may include a first compound having a host lattice comprising first ions and oxygen. In one embodiment, the host lattice may include silicon, the copper ions may be divalent copper ions and the first compound may have an Olivin crystal structure, a β-K2SO4 crystal structure, a trigonal Glaserite (K3Na(SO4)2) or monoclinic Merwinite crystal structure, a tetragonal Ackermanite crystal structure, a tetragonal crystal structure or an orthorhombic crystal structure. In another embodiment, the copper ions do not act as luminescent ions upon excitation with the light emitted by the LED.