Abstract:
Systems, system components, and methods for plasma stripping are provided. In an embodiment, a gas flow distribution receptacle may have a rounded section that includes an inner surface defining a reception cavity, an outer surface forming an enclosed end, and a centerpoint on the outer surface having a longitudinal axis extending therethrough and through the reception cavity. First and second rings of openings provide flow communication with the plasma chamber. The second ring of openings are disposed between the first ring and the centerpoint, and each opening of the second ring of openings extends between the inner and outer surfaces at a second angle relative to the longitudinal axis that is less than the first angle and has a diameter that is substantially identical to a diameter of an adjacent opening and smaller than the diameters of an opening of the first ring of openings.
Abstract:
A method and apparatus for depositing a low dielectric constant film by reaction of an organo silane compound and an oxidizing gas. The oxidized organo silane film has excellent barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organo silane film can also be used as an etch stop or an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organo silane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organo silane film is produced by reaction of methyl silane, CH3SiH3, and N2O.
Abstract:
The present invention pertains to methods for removing unwanted material from a work piece. More specifically, the invention pertains to stripping photo-resist material and removing etch-related residues from a semiconductor wafer during semiconductor manufacturing. Methods involve implementing a hydrogen plasma operation with downstream mixing with an inert gas. The invention is effective at stripping photo-resist and removing residues from low-k dielectric material used in Damascene devices.
Abstract:
A method and apparatus for depositing a low dielectric constant film by reaction of an organo silane compound and an oxidizing gas. The oxidized organo silane film has excellent barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organo silane film can also be used as an etch stop or an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organo silane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organo silane film is produced by reaction of methyl silane, CH3SiH3, and N2O.
Abstract translation:一种通过有机硅烷化合物和氧化性气体反应沉积低介电常数膜的方法和装置。 氧化的有机硅烷膜具有优异的阻挡性能,用作与其它电介质层相邻的衬垫层或盖层。 氧化的有机硅烷膜也可以用作制造双镶嵌结构的蚀刻停止层或金属间介质层。 氧化的有机硅烷膜也提供了不同介电层之间的极好的粘附性。 优选的氧化有机硅烷膜是通过甲基硅烷,CH 3 3 SiH 3 N 2和N 2 O 2的反应制备的。
Abstract:
A method of depositing and etching dielectric layers having low dielectric constants and etch rates that vary by at least 3:1 for formation of horizontal interconnects. The amount of carbon or hydrogen in the dielectric layer is varied by changes in deposition conditions to provide low k dielectric layers that can replace etch stop layers or conventional dielectric layers in damascene applications. A dual damascene structure having two or more dielectric layers with dielectric constants lower than about 4 can be deposited in a single reactor and then etched to form vertical and horizontal interconnects by varying the concentration of a carbon:oxygen gas such as carbon monoxide. The etch gases for forming vertical interconnects preferably comprises CO and a fluorocarbon, and CO is preferably excluded from etch gases for forming horizontal interconnects.
Abstract:
A method and apparatus for depositing a low dielectric constant film by reaction of an organo silane compound and an oxidizing gas. The oxidized organo silane film has excellent barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organo silane film can also be used as an etch stop or an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organo silane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organo silane film is produced by reaction of methyl silane, CH3SiH3, and N2O.
Abstract:
An apparatus for preventing particulate matter and residue build-up within a vacuum exhaust line of a semiconductor processing device. The apparatus uses RF energy to excite the constituents of particulate matter exhausted from a semiconductor processing chamber into a plasma state such that the constituents react to form gaseous products that may be pumped through the vacuum line. The apparatus may include a collection chamber structured and arranged to collect particulate matter flowing through the apparatus and inhibiting egress of the particulate matter from the apparatus. The apparatus may further include an electrostatic collector to enhance particle collection in the collection chamber and to further inhibit egress of the particulate matter.
Abstract:
This invention provides a method and apparatus for depositing a silicon oxide film over an antireflective layer to reduce footing experienced in the a subsequently applied photoresist layer without substantially altering the optical qualities of the antireflective layer. The invention thereby provides more accurate etching of underlying layers during patterning operations. The invention is also capable of providing more accurate patterning of thin films by reducing inaccuracies caused by excessive etching of photoresist during patterning. Additionally, the film of the present invention may be patterned and used as a mask in the patterning of underlying layers.
Abstract:
A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas at a constant RF power level from about 10 W to about 200 W or a pulsed RF power level from about 20 W to about 500 W. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organosilane film is produced by reaction of methylsilane, CH3SiH3, or dimethylsilane, (CH3)2SiH2, and nitrous oxide, N2O; at a constant RF power level from about 10 W to about 150 W, or a pulsed RF power level from about 20 W to about 250 W during 10% to 30% of the duty cycle.
Abstract:
A silicon oxide film is deposited on a substrate by first introducing a process gas into a chamber. The process gas includes a gaseous source of silicon (such as silane), a gaseous source of fluorine (such as SiF4), a gaseous source of oxygen (such as nitrous oxide), and a gaseous source of nitrogen (such as N2). A plasma is formed from the process gas by applying a RF power component. Deposition is carried out at a rate of at least about 1.5 &mgr;m/min. The resulting FSG film is stable and has a low dielectric constant.