摘要:
A nanoporous material exhibiting a lamellar structure is disclosed. The material comprises three or more substantially parallel sheets of an organosilicate material, separated by highly porous spacer regions. The distance between the centers of the sheets lies between 1 nm and 50 nm. The highly porous spacer regions may be substantially free of condensed material. For the manufacture of such materials, a process is disclosed in which matrix non-amphiphilic polymeric material and templating polymeric material are dispersed in a solvent, where the templating polymeric material includes a polymeric amphiphilic material. The solvent with the polymeric materials is distributed onto a substrate. Organization is induced in the templating polymeric material. The solvent is removed, leaving the polymeric materials in place. The matrix polymeric material is cured, forming a lamellar structure.
摘要:
There is provided a process for preparing a glycidyl derivative from 3-chloro-1,2-propanediol, comprising i) adding a phosphate salt to a solution into which 3-chloro-1,2-propanediol is dissolved into a solvent to produce glycidol, and ii) adding to the solution of step i) a base capable of releasing a glycidyl group from the glycidol and a substrate susceptible to nucleophilic attack to produce the desired glycidyl derivative by nucleophilic attack of the glycidyl group to the substrate.
摘要:
Methods and a structure. A first film of a first block copolymer is formed inside a trough integrally disposed on an energetically neutral surface layer of a substrate. Line-forming microdomains are assembled of the first block copolymer, and form first self-assembled structures within the first film normal to the sidewalls and parallel to the surface layer. At least one microdomain is removed from the first film such that oriented structures remain in the trough oriented normal to the sidewalls and parallel to the surface layer. A second film of a second block copolymer is formed inside the trough. Line-forming microdomains are assembled of the second block copolymer, and form second self-assembled structures within the second film oriented normal to the oriented structures and parallel to the sidewalls. A second method and a structure are also provided.
摘要:
A composition of matter and a structure fabricated using the composition. The composition comprising: a resin; polymeric nano-particles dispersed in the resin, each of the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscible with the resin; and a solvent, the solvent volatile at a first temperature, the resin cross-linkable at a second temperature, the polymeric nano-particle decomposable at a third temperature, the third temperature higher than the second temperature, the second temperature higher than the first temperature, wherein a thickness of a layer of the composition shrinks by less than about 3.5% between heating the layer from the second temperature to the third temperature.
摘要:
A method and associated structure. A substrate is provided. The substrate has an energetically neutral corrugated surface layer. A film is formed on the corrugated surface layer. The film includes a combination of a di-block copolymer and a stiffening compound. The di-block copolymer includes lamellar microdomains of a first polymer block and lamellar microdomains of a second polymer block. The stiffening compound is dissolved within the first polymer block. At least one lamellar microdomain is removed from the film such that an oriented structure remains on the surface layer.
摘要:
The present invention relates to a method for the preparation of 3-substituted-3′-hydroxypropionitrile, more particularly, to a method for the preparation of 3-substituted-3′-hydroxypropionitrile which comprises performing ring opening of 1-substituted-ethylene oxide using sodium cyanide and citric acid in a range of pH 7.8˜8.3 to provide 3-substituted-3′-hydroxypropionitrile in high optical purity and with high yield.
摘要:
Oxycarbosilane materials make excellent matrix materials for the formation of porous low-k materials using incorporated pore generators(porogens). The elastic modulus numbers measured for porous samples prepared in this fashion are 3–6 times higher than porous organosilicates prepared using the sacrificial porogen route. The oxycarbosilane materials are used to produce integrated circuits for use in electronics devices.
摘要:
A material and an associated method of formation. A self-assembling block copolymer that includes a first block species and a second block species respectively characterized by a volume fraction of F1 and F2 with respect to the self-assembling block copolymer is provided. At least one crosslinkable polymer that is miscible with the second block species is provided. The self-assembling block copolymer and the at least one crosslinkable polymer are combined to form a mixture. The mixture having a volume fraction, F3, of the crosslinkable polymer, a volume fraction, F1A, of the first block species, and a volume fraction, F2A, of the second block species is formed. A material having a predefined morphology where the sum of F2A and F3 were preselected is formed.
摘要翻译:一种材料和相关的形成方法。 一种自组装嵌段共聚物,其包括分别以相对于自组装的F 1和F 2的体积分数表征的第一嵌段物质和第二嵌段物质 嵌段共聚物。 提供了与第二嵌段物质混溶的至少一种可交联聚合物。 自组装嵌段共聚物和至少一种可交联聚合物组合形成混合物。 具有第一嵌段物质的可交联聚合物的体积分数F 3 N 3,体积分数F 1 A 1,以及体积分数F 2A SUB>。 预先选择具有预定形态的材料,其中预先选择F 2 A 2和F 3 3之和。
摘要:
A material and an associated method of formation. A self-assembling block copolymer that includes a first block species and a second block species respectively characterized by a volume fraction of F1 and F2 with respect to the self-assembling block copolymer is provided. At least one crosslinkable polymer that is miscible with the second block species is provided. The self-assembling block copolymer and the at least one crosslinkable polymer are combined to form a mixture. The mixture having a volume fraction, F3, of the crosslinkable polymer, a volume fraction, F1A, of the first block species, and a volume fraction, F2A, of the second block species is formed. A material having a predefined morphology where the sum of F2A and F3 were preselected is formed.
摘要:
A method of forming a block copolymer pattern comprises providing a substrate comprising a topographic pre-pattern comprising a ridge surface separated by a height, h, greater than 0 nanometers from a trench surface; disposing a block copolymer comprising two or more block components on the topographic pre-pattern to form a layer having a thickness of more than 0 nanometers over the ridge surface and the trench surface; and annealing the layer to form a block copolymer pattern having a periodicity of the topographic pre-pattern, the block copolymer pattern comprising microdomains of self-assembled block copolymer disposed on the ridge surface and the trench surface, wherein the microdomains disposed on the ridge surface have a different orientation compared to the microdomains disposed on the trench surface.