Abstract:
A semiconductor device which includes a reaction prevention layer between a resistive memory element and an insulating layer and a method of forming the same.
Abstract:
Provided is a semiconductor device including a resistive memory element. The semiconductor device includes a substrate and the resistive memory element disposed on the substrate. The resistive memory element has resistance states of a plurality of levels according to generation and dissipation of at least one platinum bridge therein.
Abstract:
A resistive random access memory (RRAM) device may include a first metal pattern on a substrate, a first insulating layer on the first metal pattern and on the substrate, an electrode, a second insulating layer on the first insulating layer, a resistive memory layer, and a second metal pattern. Portions of the first metal pattern may be between the substrate and the first insulating layer, and the first insulating layer may have a first opening therein exposing a portion of the first metal pattern. The electrode may be in the opening with the electrode being electrically coupled with the exposed portion of the first metal pattern. The first insulating layer may be between the second insulating layer and the substrate, and the second insulating layer may have a second opening therein exposing a portion of the electrode. The resistive memory layer may be on side faces of the second opening and on portions of the electrode, and the second metal pattern may be in the second opening with the resistive memory layer between the second metal pattern and the side faces of the second opening and between the second metal pattern and the electrode. Related methods are also discussed.
Abstract:
A Resistance based Random Access Memory (ReRAM) can include a current reference circuit including at least three ReRAM reference cells coupled in parallel with one another and configured to provide a reference current to respective ReRAM sense amplifier circuits.
Abstract:
There are provided a magnetic tunnel junction structure and a method of fabricating the same. The magnetic tunnel junction structure includes a lower electrode, a lower magnetic layer pattern and a tunnel layer pattern, which are sequentially formed on the lower electrode. The magnetic tunnel junction structure further includes an upper magnetic layer pattern, a buffer layer pattern, and an upper electrode, which are sequentially formed on a portion of the tunnel layer pattern. The sidewall of the upper magnetic layer pattern is surrounded by an oxidized upper magnetic layer, and the sidewall of the buffer layer pattern is surrounded by an oxidized buffer layer. The depletion of the upper magnetic layer pattern and the lower magnetic layer pattern in the magnetic tunnel junction region can be prevented by the oxidized buffer layer.
Abstract:
Disclosed is a metal-metal oxide resistive memory device including a lower conductive layer pattern disposed in a substrate. An insulation layer is formed over the substrate, including a contact hole to partially expose the upper surface of the lower conductive layer pattern. The contact hole is filled with a carbon nanotube grown from the lower conductive layer pattern. An upper electrode and a transition-metal oxide layer made of a 2-components material are formed over the carbon nanotube and the insulation layer. The metal-metal oxide resistive memory device is adaptable to high integration and operable with relatively small power consumption by increasing the resistance therein.
Abstract:
A memory cell includes a plug-type first electrode in a substrate, a magneto-resistive memory element disposed on the first electrode, and a second electrode disposed on the magneto-resistive memory element opposite the first electrode. The second electrode has an area of overlap with the magneto-resistive memory element that is greater than an area of overlap of the first electrode and the magneto-resistive memory element. The first surface may, for example, be substantially circular and have a diameter less than a minimum planar dimension (e.g., width) of the second surface. The magneto-resistive memory element may include a colossal magneto-resistive material, such as an insulating material with a perovskite phase and/or a transition metal oxide.
Abstract:
A method of programming a non-volatile memory device including a transition metal oxide layer includes applying a first electric pulse to the transition metal oxide layer for a first period to reduce a resistance of the transition metal oxide layer and applying a second electric pulse to the transition metal oxide layer for a second period, longer than the first period, to increase the resistance of the transition metal oxide layer. Related devices are also disclosed.
Abstract:
There are provided a magnetic tunnel junction structure and a method of fabricating the same. The magnetic tunnel junction structure includes a lower electrode, a lower magnetic layer pattern and a tunnel layer pattern, which are sequentially formed on the lower electrode. The magnetic tunnel junction structure further includes an upper magnetic layer pattern, a buffer layer pattern, and an upper electrode, which are sequentially formed on a portion of the tunnel layer pattern. The sidewall of the upper magnetic layer pattern is surrounded by an oxidized upper magnetic layer, and the sidewall of the buffer layer pattern is surrounded by an oxidized buffer layer. The depletion of the upper magnetic layer pattern and the lower magnetic layer pattern in the magnetic tunnel junction region can be prevented by the oxidized buffer layer.
Abstract:
A semiconductor device includes a first horizontal molding pattern, a horizontal electrode pattern disposed on the first horizontal molding pattern, and a second horizontal molding pattern disposed on the horizontal electrode pattern. A vertical structure extends through the horizontal patterns. The vertical structure includes a vertical electrode pattern, a data storage pattern interposed between the vertical electrode pattern and the horizontal patterns, a first buffer pattern interposed between the data storage pattern and the first molding pattern, and a second buffer pattern interposed between the data storage pattern and the second molding pattern and spaced apart from the first buffer pattern.