Abstract:
Embodiments provided herein describe systems and methods for forming ferroelectric materials. A trench body may be provided. A trench may be formed in the trench body. A dielectric material and a filler material may be deposited within the trench. The filler material may be heated such that a stress is exerted on the dielectric material before the dielectric material is heated to generate a ferroelectric phase within the dielectric material. A non-contiguous layer may be formed above a substrate. A second layer including a high-k dielectric material may be formed above the first layer. The high-k dielectric material may be heated to generate a ferroelectric phase within the high-k dielectric material.
Abstract:
Methods for sealing a porous dielectric are presented including: receiving a substrate, the substrate including the porous dielectric; exposing the substrate to an organosilane, where the organosilane includes a hydrolysable group for facilitating attachment with the porous dielectric, and where the organosilane does not include an alkyl group; and forming a layer as a result of the exposing to seal the porous dielectric. In some embodiments, methods are presented where the organosilane includes: alkynyl groups, aryl groups, fluoroalkyl groups, heteroaryl groups, alcohol groups, thiol groups, amine groups, thiocarbamate groups, ester groups, ether groups, sulfide groups, and nitrile groups. In some embodiments, method further include: removing contamination from the porous dielectric and a conductive region of the substrate prior to the exposing; and removing contamination from the conductive region after the forming.
Abstract:
Metal silicon nitride nanolaminates are formed at temperatures of 200-400 C by alternating ALD monolayers or thin CVD layers of metal nitride and silicon nitride. The silicon nitride layers are formed from a silicon halide precursor, causing nitrogen bonds to replace the halogen bonds, which is a lower-energy reaction than bonding nitrogen to elemental silicon. The silicon content, and thereby the resistivity, of the nanolaminate can be tuned by either a sub-saturation dose of the silicon halide precursor (forming ALD sub-monolayers) or by the relative number of metal nitride and silicon nitride layers. Resistivities between 1 and 500 Ω·cm, suitable for ReRAM embedded resistors, can be achieved. Some of the nanolaminates can function as combination embedded resistors and electrodes.
Abstract:
Embodiments provided herein describe low-e panels and methods for forming low-e panels. A transparent substrate is provided. A first dielectric layer is formed above the transparent substrate. The first dielectric layer includes zinc, tin, and aluminum. A first reflective layer is formed above the first dielectric layer. A second dielectric layer is formed above the first reflective layer. The second dielectric layer includes zinc, tin, and aluminum. A second reflective layer is formed above the second dielectric layer.
Abstract:
Embodiments provided herein describe systems and methods for processing substrates. A substrate having a first region and a second region is provided. A container is positioned proximate to the first region of the substrate. The container has an opening on an end thereof adjacent to the substrate. A processing liquid is dispensed into the container such that the processing liquid contacts the first region of the substrate through the opening. The gaseous pressure in a portion of the container devoid of the processing liquid is reduced. The reduction of the gaseous pressure prevents the processing liquid from flowing from the first region of the substrate to the second region of the substrate.
Abstract:
A bi-layer seed layer can exhibit good seed property for an infrared reflective layer, together with improved thermal stability. The bi-layer seed layer can include a thin zinc oxide layer having a desired crystallographic orientation for a silver infrared reflective layer disposed on a bottom layer having a desired thermal stability. The thermal stable layer can include aluminum, magnesium, or bismuth doped tin oxide (AlSnO, MgSnO, or BiSnO), which can have better thermal stability than zinc oxide but poorer lattice matching for serving as a seed layer template for silver (111).
Abstract:
Selector elements that can be suitable for nonvolatile memory device applications are disclosed. The selector element can have low leakage currents at low voltages to reduce sneak current paths for non selected devices, and higher leakage currents at higher voltages to minimize voltage drops during device switching. The selector element can be based on multilayer film stacks (e.g. metal-semiconductor-metal (MSM) stacks). The semiconductor layer of the selector element can include a silicon carbide/silicon nitride nanolaminate stack. The semiconductor layer of the selector element can include a silicon carbon nitride/silicon nitride nanolaminate stack. Conductive materials of the MSM may include tungsten, titanium nitride, carbon, or a combination thereof.
Abstract:
Embodiments provided herein provide systems and methods for wet processing substrates with a rotating splash shield. The systems include a fluid dispenser configured to dispense a processing fluid. A substrate support configured to support and rotate a substrate is also included. The substrate support is disposed such that the processing fluid dispensed by the fluid dispenser flows onto the substrate. A splash shield is positioned on at least one side of the substrate support and is configured to rotate. The splash shield has an upper portion extending above an upper surface of the substrate and a lower portion extending below a lower surface of the substrate.
Abstract:
In some embodiments, a metal oxide second electrode material is formed as part of a MIM DRAM capacitor stack. The second electrode material is doped with one or more dopants. The dopants may influence the crystallinity, resistivity, and/or work function of the second electrode material. The dopants may be uniformly distributed throughout the second electrode material or may be distributed with a gradient in their concentration profile.
Abstract:
Embodiments provided herein describe solid-state lithium batteries and methods for forming such batteries. A first current collector is provided. A first electrode is formed above the first current collector. The first electrode includes lithium and cobalt and is formed using PVD in a gaseous environment including at least 96% argon. An electrolyte is formed above the first electrode. A second electrode is formed above the electrolyte. A second current collector is formed above the second electrode.