Abstract:
The present invention relates to a twin-frame bicycle, particularly to one that can be pedaled by two riders in side-by-side coordination so that the riders and the twin-frame bicycle will incline integrally without tumbling or overturning. At least one articulation mechanism is disposed between a primary bicycle body and an auxiliary bicycle body, wherein the articulation mechanism serves in synergy an articulation parallelogram, and a resilient tension mechanism having an elastic element is disposed between the primary bicycle body and the auxiliary bicycle body and counteracts the deformation of the articulation mechanism to maintain equilibrium.
Abstract:
A pixel and an illuminating device thereof are provided. The pixel includes an organic light emitting diode (OLED), a transistor, a first switch, a second switch and a capacitor. One end of the OLED is electrically connected to a first voltage. A first source/drain of the transistor is electrically connected to a first potential point. The first switch is electrically connected between a second source/drain of the transistor and a second potential point, and is controlled by a first driving signal. The second switch is electrically connected between the second source/drain of the transistor and a gate of the transistor, and is controlled by a second driving signal. The capacitor is electrically connected between the gate of the transistor and a data line. The first driving signal and the second driving signal are used to alternately enable/disable the first and the second switches, so as to drive the pixel.
Abstract:
An improved connector mechanism having a connector coupling nut of a cylindrical tubular configuration with a bore extending therethrough. In one embodiment, the coupling nut has camming slots which align with bayonet pins on the mating adapter serving to draw the connector inwardly to the adapter upon rotation of the coupling nut. A detent window at the end of each camming slot engages and retains the bayonet pins driven slidingly along the camming slots during rotation. A resilient spring member provides stability between the end of the adapter and the internal bore of the coupling nut at the completion of the coupling operation. Variations of spring arrangements force the cylindrical fiber optic terminus, located axially centered within the coupling sleeve, forward to assure pressured abutment with a like mating terminus located opposite at the other end of the adapter. A cylindrical alignment element in the adapter having an internal bore accepts termini tips slidingly from both sides, radial forces provided by this tip assuring resistance force and stability of location of tips with the alignment bushing. A cable jacket/strength member termination at the rear of the terminus is affixed to the terminus in such manner as to be independent of any influence on the fiber/terminus tip. In another embodiment, the connector has a threaded coupling mechanism. In yet another embodiment the transmission medium may be an electrically conducting metallic wire.
Abstract:
A user equipment (UE) power-cycles UE transmission modem components to reduce overall UE power consumption. For example, multiple HARQ ACK/NACK feedback bits are aggregated for a predetermined number of consecutive DL subframes, and then the feedback is transmitted in a single dedicated UL subframe so that a transmitter and power amplifier may be temporarily turned off (State 3) to reduce power consumption in the UE.
Abstract:
An organic thin field transistor is disclosed. The organic thin field transistor includes a first and a second insulting layers, a metal structure and an organic layer serving as an active layer. Materials of the first and the second insulting layers are different, and by performing an etching process, a surface of the metal structure and a surface of the second insulting layer are effectively aligned. Because of the high flatness of the surface of the metal structure and the second insulting layer, a continuous film-forming property and crystallinity of the active layer of the organic thin field transistor are improved, so as to achieve a better the electrical characteristic.
Abstract:
The present invention discloses a background calibration system and method for calibrating the non-linear distortion of the amplifier. The calibration method in the present invention includes: generating random sequences and inputting the random sequences in different amount and different sets into an amplifier; amplifying the random sequences and detecting linear and non-linear coefficients; quantizing the output linear signal from the amplifier, and generating a digital output signal; multiplying the digital output signal to generate a high-order signal; generating an estimated non-linear error for the amplifier by multiplying the high-order signal with the estimated non-linear coefficient; adding the non-linear signal with the digital output signal to generate a linear output signal; calculating the random value from the parameter extractor to determine the occurrence of non-linear distortion in the circuit, and further adjusting the non-linear coefficient to calibrating the amplifier.
Abstract:
A micro-sensing element includes a substrate, a micro-sensing structure and a covering material. The micro-sensing structure has a plurality of conductive channels disposed on the substrate. Each conductive channel includes a sensing part, a conductive wire and an electrode. The sensing part is electrically connected with the electrode through the conductive wire. The covering material covers the substrate and the conductive wires, and each of the sensing parts and each of the electrodes are exposed out of the covering material. A bio-sensing system and a manufacturing method of the micro-sensing element are also disclosed.
Abstract:
A method for defining plural windows with different etching depths simultaneously is disclosed. The method includes steps of (a) forming a photoresist on a substrate having a multiple film structure thereon, (b) exposing a first region of the photoresist to a first exposure dose and a second region of the photoresist to a second exposure dose, (c) obtaining different remaining thickenesses of the photoresist on the first region and the second region by a development, and (d) etching the first region and the second region of the photoresist for forming the plural windows with different etching depths of the multiple film structure.
Abstract:
A pixel unit for driving an organic light emitting diode (OLED) is disclosed. The pixel unit includes a driving transistor, a compensating capacitor, a selecting switch module, a power switch and a configuration switch. One terminal of the compensating capacitor is coupled to a gate of the driving transistor. The selecting switch module provides the ground voltage or the compensating voltage to the other terminal of the compensating capacitor according to a first control signal. The power switch is coupled between a power voltage and a drain of the driving transistor and is controlled by a second control signal. The configuration switch receives the first control signal for controlling a connecting configuration of the driving transistor. The pixel unit is driven according to the first and the second control signals for compensating threshold voltage shifting of the OLED and the driving transistor.