Abstract:
Apparatuses for mixing droplets, such as a binary mixing apparatus, are provided. The binary mixing apparatus includes an array of electrodes and a conducting element positioned in relation to at least one of the electrodes to enable a droplet placed in electrical communication with the at least one electrode to electrically communicate with the conducting element. The binary mixing apparatus additionally includes an electrode selector for sequentially biasing one or more selected electrodes of the array to move a droplet disposed on the array into contact with another droplet. The apparatus further includes a first droplet supply area communicating with the array and a second droplet supply area communicating with the array.
Abstract:
Apparatuses and methods for manipulating droplets on a printed circuit board (PCB) are disclosed. Droplets are actuated upon a printed circuit board substrate surface by the application of electrical potentials to electrodes defined on the PCB. The use of soldermask as an electrode insulator for droplet manipulation as well techniques for adapting other traditional PCB layers and materials for droplet-based microfluidics are also disclosed.
Abstract:
Improved adjustment of transmission power in a communication system is provided. In one embodiment, in a point to multipoint communication system, transmission power of a subscriber unit is controlled based on power measurements made at a central access point. Power measurement information based on transmissions occurring at irregular intervals may be combined in a beneficial manner to control transmission output power. In one embodiment, a power regulation process determines a series of difference values indicating the differences between desired received power level at the central access point and measured received power level. A smoothing process is applied to the difference values. One or more parameters of the smoothing process vary with elapsed time since a last available power measurement.
Abstract:
Systems and methods for efficiently transmitting power level information in a point to multipoint wireless system. Multiple subscriber units may transmit indications of their power level within a shared burst where one or more subchannels are allocated to each subscriber unit. The burst holding the power level information may be understood by the MAC layer to be a data burst. In this way, a wireline MAC protocol may be applied to wireless applications.
Abstract:
Highly effective systems and methods for synchronizing OFDM receiver parameters to an OFDM transmitter are provided. These parameters may include carrier frequency, burst timing, and cyclic prefix length. These systems and methods incorporate special structural features into the OFDM signal to facilitate synchronization. In one embodiment, a supplemental cyclic prefix is added to an OFDM signal to facilitate synchronization. In an alternative embodiment, a synchronization burst with a periodic structure is used to facilitate synchronization. According to the present invention, synchronization may be maintained even if low cost analog oscillator components are used.
Abstract:
A personal use oxygen concentrator, including; a controllable user interface including at least one of visual and audio indicators, a power supply, a housing, a controllable product gas output device, a blower, a compressor, a selective adsorption system comprising adsorption beds and gas flow control valves comprising at least one of a PSA, VPSA, or VSA oxygen producing system, a programmable controller configured to control at least one of the blower, compressor, output device, user interface, and selective adsorption system, and an integrated smoke detection system and smoke detector controller, mounted within the housing, configured to be controlled by and provide data to the programmable controller, and the programmable controller may perform predetermined control actions when smoke is detected.
Abstract:
Systems and methods for advanced signaling between stages of transmitters and/or receivers in a digital communication system. One or more intermediate frequency signals and one or more control signals may share the same cable. Also, systems and methods are provided for calibrating head end receiver gain to improve subscriber unit power control loop performance.
Abstract:
Protein crystallization droplet actuators, systems and methods are provided. According to one embodiment, a droplet actuator for providing an array of crystallization conditions is provided and includes: (a) two or more processing reservoirs; (b) two or more dispensing reservoirs collectively comprising two or more crystallization reagents; and (c) a port for introducing a sample for crystallization analysis. Systems including the droplet actuator, methods of providing an array of crystallization conditions, and methods of identifying crystallization conditions are also provided.
Abstract:
The present invention relates to a droplet-based nucleic acid amplification device, system, and method. According to one embodiment, a droplet microactuator is provided and includes: (a) a substrate comprising electrodes for conducting droplet operations; and (b) one or more temperature control means arranged in proximity with one or more of the electrodes for heating and/or cooling a region of the droplet microactuator and arranged such that a droplet can be transported on the electrodes into the region for heating.
Abstract:
Methods for performing microfluidic sampling are provided. The method includes providing a substrate including an arrangement of first, second and third electrodes, wherein the second electrode is interposed between the first and third electrodes. The method additionally includes causing a fluid input to continuously flow to the first electrode and biasing the first, second and third electrodes to a first voltage to cause a portion of the fluid input to spread across the second and third electrodes. The method further includes biasing the second electrode to a second voltage different from the first voltage to form a droplet on the third electrode, the droplet being separate from the fluid input.