Abstract:
A personal use oxygen concentrator, including; a controllable user interface including at least one of visual and audio indicators, a power supply, a housing, a controllable product gas output device, a blower, a compressor, a selective adsorption system comprising adsorption beds and gas flow control valves comprising at least one of a PSA, VPSA, or VSA oxygen producing system, a programmable controller configured to control at least one of the blower, compressor, output device, user interface, and selective adsorption system, and an integrated smoke detection system and smoke detector controller, mounted within the housing, configured to be controlled by and provide data to the programmable controller, and the programmable controller may perform predetermined control actions when smoke is detected.
Abstract:
Systems and methods for advanced signaling between stages of transmitters and/or receivers in a digital communication system. One or more intermediate frequency signals and one or more control signals may share the same cable. Also, systems and methods are provided for calibrating head end receiver gain to improve subscriber unit power control loop performance.
Abstract:
Systems and methods for efficiently transmitting power level information in a point to multipoint wireless system. Multiple subscriber units may transmit indications of their power level within a shared burst where one or more subchannels are allocated to each subscriber unit. The burst holding the power level information may be understood by the MAC layer to be a data burst. In this way, a wireline MAC protocol may be applied to wireless applications.
Abstract:
A space-time signal processing system with advantageously reduced complexity. The system may take advantage of multiple transmitter antenna elements and/or multiple receiver antenna elements, or multiple polarizations of a single transmitter antenna element and/or single receiver antenna element. The system is not restricted to wireless contexts and may exploit any channel having multiple inputs or multiple outputs and certain other characteristics. Multi-path effects in a transmission medium cause a multiplicative increase in capacity.
Abstract:
A medium access contention protocol that is highly beneficial in wireless networks and particularly in wireless networks that employ a fixed minimum burst size such as OFDM wireless networks. In one embodiment, a MAC protocol is a demand-assigned protocol that maximizes utilization of the bus medium (the allocated frequency spectrum.) Each data communication device (DCD) in the network communicates with a central access point (AP). Multiple DCDs may request access from the AP in the same request access (RA) burst. Each of the multiple DCDs transmits its access request to the AP within a frequency domain channel in the RA burst that is orthogonal to the frequency domain channels used by the other DCDs requesting access. Each DCD includes channel training information in the access request burst to allow the AP and/or DCD to adapt to rapid variations in channel characteristics.
Abstract:
A keeper (12), a clamp (14), a heater strip (16) and a heated air diffuser (18) are provided for a slider insertion apparatus (10) which inserts sliders (28) on the interlocked profiles (20, 22) of a zipper (23). The heater strip (16) and/or the diffuser (18) heat the zipper (23) to a predetermined temperature prior to slider insertion. The keeper (12) aligns the slider (32) within the insertion area (34) with the activator with pusher (26) of the slider insertion apparatus (10). By changing the mounting of the zipper guide (28) and by actuating the clamp (14) during slider insertion, the zipper (32) indexes to the slider insertion apparatus (10) in alternate directions.
Abstract:
A method of mixing a droplet, the method comprising providing a droplet on a surface, forming the droplet into a first “U” shape having a bottom region and two terminal ends, and simultaneously merging the terminal ends and splitting the droplet at the bottom region to form a second “U” shape which is substantially opposite the first “U” shape.
Abstract:
The invention provides droplet actuators with droplet operations surfaces for manipulating droplets, e.g., by conducting droplet operations. The droplet operations surfaces are typically exposed to a droplet operations gap. One or more regions of a droplet operation surface may include patterned topographic features. The invention also provides a droplet actuator in which one or both gap-facing droplet operations surfaces is formed using a removable film. The removable film may, in various embodiments, also include other components ordinarily associated with the droplet actuator substrate, such as the dielectric layer and the electrodes. Further, the invention provides droplet actuator devices and methods for coupling and/or sealing substrates of a droplet actuator, such as techniques for self-aligning assembly of droplet actuator substrates. The invention provides droplet actuators and methods of disassembling the droplet actuator in order to provide access for cleaning and/or recycling of droplet actuator surfaces.
Abstract:
Protein crystallization screening and optimization droplet actuators, systems and methods are provided. According to one embodiment, a screening droplet actuator is provided and includes: (a) a port for introduction of one or more crystallization reagents and/or one or more protein solutions; and (b) a substrate including: (i) an array of two or more mixing wells; and (ii) electric field mediated microfluidics for moving droplets comprising the crystallization reagents and protein solutions into the mixing wells. Optimization droplet actuators, systems including screening droplet actuators, methods of screening protein crystallization conditions, and methods of testing conditions for growing a crystal are also provided.
Abstract:
The present invention relates to droplet-based affinity assays. According to one embodiment, a method of detecting a target analyte in a sample is provided, wherein the method includes: (a) executing droplet operations to combine affinity-based assay reagents on a droplet microactuator with a sample potentially comprising the target analyte to generate a signal indicative of the presence, absence and/or quantity of analyte; and (b) detecting the signal, wherein the signal corresponds to the presence, absence and/or quantity of the analyte in the sample.