Abstract:
A method of forming an implantable and retrievable immunoisolatory vehicles is disclosed, the method comprising the steps of first forming a core comprising a volume of at least 1 .mu.l and at least 10.sup.4 cells capable of providing a biologically active product or metabolic or immunologic function, said cells being dispersed in a biocompatible hydrogel or extracellular matrix, and then forming around the core a surrounding external biocompatible thermoplastic or hydrogel jacket free of said cells projecting externally thereof, said jacket having molecular weight cutoff permitting passage of molecules to and from the core through said jacket to provide said biologically active product or function.
Abstract:
This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
Abstract:
This invention relates to implantation of encapsulated PC12 cells capable of slowing or preventing the degenerative processes of Parkinson's disease by releasing factors in addition to dopamine into individuals suffering from the disease. This restorative effect continues even after the encapsulated cells are removed from the patient's brain.
Abstract:
Elongated seamless capsules containing biological material are prepared by a method in which a coagulant, which includes a cell suspension or other biologically active factor, and a polymeric casting solution are extruded through a common extrusion port having at least two concentric bores, such that the coagulant is extruded through the inner bore and the polymeric casting solution is extruded through the outer bore. The method involves initiating extrusion of the coagulant subsequent to initiating delivery of the casting solution through the respective bores to form a capsule having a curved and smooth leading edge shape. Delivery of the coagulant is then shut off, and extrusion of the casting solution is terminated either immediately or after some predetermined time.
Abstract:
A medical device is disclosed for use in regenerating a severed nerve, including a tubular, biocompatible, electrically-charged membrane or guidance channel, having openings adapted to receive the ends of the severed nerve and defining a lumen through which the nerve can regenerate. The electrically-charged membrane can further include a polymeric electret material that is electrically poled. A method for repairing a severed nerve is also disclosed and includes placing severed nerve ends in proximity to each other within the lumen of the guidance channel of the present invention and securing the nerve ends to the device.
Abstract:
A medical device is disclosed for use in regenerating a severed nerve. The device includes an implantable, tubular, electrically-charged membrane having openings adapted to receive the ends of the severed nerve and a lumen having a diameter ranging from about 0.5 millimeters to about 2.0 centimeters to permit regeneration of the nerve therethrough. The membrane is fabricated such that an electric charge is exhibited at the inner membrane surface to stimulate regeneration by axonal sprouting and process extension. Also disclosed are methods for repairing a severed nerve and for preparing a medical device for use in regeneration of a severed nerve.
Abstract:
Medical devices and methods employing biocompatible polymers and nerve growth-enhancing active factors are disclosed for use as guidance channels for regenerating nerves. The devices are formed from a porous, tubular membrane containing active factor incorporated within the membrane and having openings adapted to receive the ends of the severed nerve. In one aspect of the invention, the membrane has an impermeable, outer membrane surface and a porous, inner membrane surface through which the active factor can diffuse and which defines the boundary of a lumen through which said nerve may regenerate. Methods for fabricating such devices are also disclosed.
Abstract:
The invention relates to the use of an IL-6R/IL-6 chimera, a mutein, isoform, fused protein, functional derivative, active fraction or circularly permutated derivative or a salt thereof, for the manufacture of a medicament for the treatment and/or prevention of Huntington's disease.
Abstract:
Disclosed and claimed are methods for treating or preventing neurodegenerative diseases, conditions or maladies or symptoms or physiology associated therewith, such as treating or preventing Parkinson's disease or symptoms or physiology associated therewith such as motor deficits or nigrostriatal degeneration; or, for inducing nigrostriatal regeneration. Advantageously, the methods involve administering a lentiviral vector that expresses GDNF, such as human GDNF, or a variant, homolog, analog or derivative thereof.
Abstract:
An immunoisolatory vehicle for the implantation into an individual of cells which produce a needed product or provide a needed metabolic function. The vehicle is comprised of a core region containing isolated cells and materials sufficient to maintain the cells, and a permselective, biocompatible, peripheral region free of the isolated cells, which immunoisolates the core yet provides for the delivery of the secreted product or metabolic function to the individual.