Abstract:
Multilayer barrier films and methods of making the films are provided. The films include a smooth layer and a barrier layer directly disposed on the smooth layer. In some cases, the smooth layer includes a thiol-ene material as a polymeric matrix material. In some cases, the films have a sandwich structure of barrier layer/smooth layer/substrate/smooth layer/barrier layer.
Abstract:
Compounds having hindered amine and oxyalkyl amine light stabilizers can mitigate the adverse effects of actinic radiation, such as visible and ultraviolet light, in particular on substrates such as glass or ceramic substrates. Polymers derived from such compounds. Nanoparticles, substrates, such as glass or ceramic substrates, or both nanoparticles and substrates, having such compounds affixed thereto. Articles containing at least one of such polymers, nanoparticles, substrates, or compounds.
Abstract:
Hardcoat comprising a binder, and in a range from 15 to 95 volume % nanoparticles, wherein at least a portion of the nanoparticles are functionalized by free radical reactive silane and cyano group containing silane. Hardcoats described herein are useful, for example, on portable and non-portable information display articles (e.g., illuminated and non-illuminated display articles).
Abstract:
Presently described are hardcoat compositions comprising at least one first (meth)acrylate monomer comprising at least three (meth)acrylate groups and C2-C4 alkoxy repeat units wherein the monomer has a molecular weight per (meth)acrylate group ranging from about 220 to 375 g/mole and at least one second (meth)acrylate monomer comprising at least three (meth)acrylate groups. In one embodiment, the hardcoat composition further comprises and at least 50 wt-% solids of silica nanoparticles. Also described are articles, such as protective films, displays, and touch screens comprising such cured hardcoat compositions.
Abstract:
Coating compositions are described comprising a non-ionic surfactant and an additive wherein the additive comprises a low surface energy group and one or more hydroxyl groups. The cured coating can exhibit reduced fingerprint visibility and low cellulose surface attraction. Also described are copolymer compositions useful as additives.
Abstract:
A method of making a shaped abrasion-resistant multilayer optical film includes providing a curable composition comprising, based on the total weight of components a) to d) components: a) 87 to 96 weight percent of urethane (meth)acrylate compound having an average (meth)acrylate functionality of 2 to 4.8; b) 2 to 12.5 weight percent of (meth)acrylate monomer having a (meth)acrylate functionality of 1 to 2, wherein the (meth)acrylate monomer does not comprise a urethane (meth)acrylate compound; optionally c) 0.5 to 2 weight percent of silicone (meth)acrylate; and d) optional effective amount of photoinitiator. The curable composition is coated onto an MOF. Optionally, the curable composition to is at least partially dried. Next, the curable composition or the at least partially dried curable composition is at least partially cured to provide an abrasion-resistant multilayer optical film. Lastly, the abrasion-resistant multilayer optical film is thermoformed using a female mold having a mold surface. At least a portion of the mold surface has a radius of curvature of 58 to 76 mm and a maximum depth of 13 to 20 mm.
Abstract:
A copolymer preparable by copolymerization of monomer components comprising: a) polydimethylsiloxane mono(meth)acrylate having a molecular weight of from 300 to 10000 grams/mole; b) optionally C3-C10 carboxylic acid-functional mono(meth)acrylate or a salt thereof; c) at least one C5-C16 hydroxyalkyl mono(meth)acrylate; and d) at least one of: i) C10-C30 linear alkyl mono(meth)acrylate optionally having one or two carbon atoms replaced by O or S; or ii) at least one (meth)acrylate represented by the formula wherein: R1 is H or a C1-C4 alkyl group; n is an integer from 0 to 18, inclusive; each X is O, S, C2-C6 oxyalkylenoxy, C2-C6 thioalkylenethio, or a covalent bond; and R2 is independently a C5-C50 hydrocarbyl group. The copolymer is useful as a water- and oil-repellent treatment on a substrate. Certain monomers corresponding to component ii) are also disclosed.
Abstract:
The present disclosure provides a photopolymerizable composition. The photopolymerizable composition includes a) 40-60 parts by weight of a monofunctional (meth)acrylate monomer, per 100 parts of the total photopolymerizable composition; b) a photoinitiator; and c) a polymerization reaction product of components. A cured homopolymer of the monofunctional (meth)acrylate monomer has a glass transition temperature of 125 degrees Celsius or greater. The polymerization reaction product of components includes i) a diisocyanate; ii) a hydroxy functional methacrylate; iii) a polycarbonate diol; and iv) a catalyst. The polymerization reaction product includes a polyurethane methacrylate polymer. Often, the polycarbonate diol has a number average molecular weight of greater than 1,000 grams per mole (g/mol) or a weighted average of all polycarbonate diols present in the components has a Mn of greater than 1,000 g/mol; alternatively, the polyurethane methacrylate polymer has a weight average molecular weight of 8,000 g/mol or greater. An article is also provided including the photopolymerizable composition reaction product. Further, the present disclosure provides articles and methods of making articles. Methods are additionally provided, including receiving, by a manufacturing device having one or more processors, a digital object comprising data specifying an article; and generating, with the manufacturing device by an additive manufacturing process, the article based on the digital object. A system is also provided, including a display that displays a 3D model of an article; and one or more processors that, in response to the 3D model selected by a user, cause a 3D printer to create a physical object of an article.
Abstract:
An optical assembly including an optical element insert molded directly onto an optical stack is provided. The optical stack includes an optical film and may include a liner with the optical film being disposed between the optical element and the liner. The liner, if included, is removable from the optical film without substantial damage to the optical film. An outermost layer of the optical film may be diffusion bonded to a major surface of the optical element.