Abstract:
Electronic devices have a PCB with a heat-generating component (e.g., POP or SOC), a heat sink, and an EMI shielding structure. A combination structure can include a top heat spreader/EMI shield located above and in thermal contact with the POP/SOC top, a bottom heat spreader/EMI shield located below and in thermal contact with the POP/SOC bottom, and a heat-directing component located on the PCB, laterally surrounding a majority of the POP/SOC sides, and between and in thermal contact with the top and bottom heat spreaders. Resulting heat paths for the POP/SOC include one through its top to the top heat spreader, another through its bottom to the bottom heat spreader, and others through its sides through the PCB through the heat-directing component to the top and bottom heat spreaders. The heat-directing component can be a metal horseshoe shaped pad integrally formed onto the PCB.
Abstract:
The present application describes various embodiments regarding systems and methods for providing efficient heat rejection for a lightweight and durable compact computing system having a small form factor. The compact computing system can take the form of a desktop computer. The desktop computer can include a monolithic top case having an integrated support system formed therein, the integrated support system providing structural support that distributes applied loads through the top case preventing warping and bowing. A mixed flow fan is utilized to efficiently pull cooling air through the compact computing system.
Abstract:
The disclosed embodiments related to a component for use in a portable electronic device. The component includes a wall of the portable electronic device, containing an intake zone that includes a set of intake vents directed at a first angle toward one or more heat-generating components of the portable electronic device. The wall also includes an exhaust zone containing a set of exhaust vents directed at a second angle out of the portable electronic device.
Abstract:
A desktop computing system having at least a central core surrounded by housing having a shape that defines a volume in which the central core resides is described. The housing includes a first opening and a second opening axially displaced from the first opening. The first opening having a size and shape in accordance with an amount of airflow used as a heat transfer medium for cooling internal components, the second opening defined by a lip that engages a portion of the airflow in such a way that at least some of the heat transferred to the air flow from the internal components is passed to the housing.
Abstract:
An electronic device can be provided with a housing having at least one wall defining a cavity and a flow sensor at least partially contained within the cavity. The flow sensor may be configured to detect a flow characteristic related to the flow of a fluid through a first portion of the cavity. The electronic device may also include a processor configured to alter a performance characteristic of the electronic device based on the detected flow characteristic.
Abstract:
The disclosed embodiments provide a component for a portable electronic device. The component includes a gasket containing a rigid portion disposed around a bottom of a heat pipe, wherein the rigid portion forms a duct between a fan and an exhaust vent of the electronic device. The gasket also includes a first flexible portion bonded to the rigid portion, wherein the first flexible portion comprises a flap that is open during assembly of the heat pipe in the electronic device and closed over the heat pipe and the rigid portion to seal the duct around the heat pipe after the assembly.
Abstract:
The disclosed embodiments related to a component for use in a portable electronic device. The component includes a wall of the portable electronic device, containing an intake zone that includes a set of intake vents. The wall also includes an exhaust zone containing a set of exhaust vents.
Abstract:
The disclosed embodiments provide a component for a portable electronic device. The component includes a gasket containing a rigid portion disposed around a bottom of a heat pipe, wherein the rigid portion forms a duct between a fan and an exhaust vent of the electronic device. The gasket also includes a first flexible portion bonded to the rigid portion, wherein the first flexible portion comprises a flap that is open during assembly of the heat pipe in the electronic device and closed over the heat pipe and the rigid portion to seal the duct around the heat pipe after the assembly.
Abstract:
The disclosed embodiments provide a component for a portable electronic device. The component includes a gasket containing a rigid portion disposed around a bottom of a heat pipe, wherein the rigid portion forms a duct between a fan and an exhaust vent of the electronic device. The gasket also includes a first flexible portion bonded to the rigid portion, wherein the first flexible portion comprises a flap that is open during assembly of the heat pipe in the electronic device and closed over the heat pipe and the rigid portion to seal the duct around the heat pipe after the assembly.
Abstract:
One or more operations in an electronic device can be adjusted based on environment data, such as temperature data and/or humidity data. The electronic device may be, for example, a receiver device or a transmitter device in an inductive energy transfer system. Example operations that may be adjusted based on environmental data include, but are not limited to, the brightness of a display or a haptic output produced by a haptic mechanism.