Abstract:
A technology for a power management module that is operable to reduce power consumption in a communications network. A resource availability of one or more evolved node B (eNode Bs) in the communications network can be determine to receive data traffic of a plurality of user equipment (UEs) in communication with a serving eNode B. A power consumption rate of the communications network can be calculated when the serving eNode B is placed in a power saving mode. The serving eNode B can be switched to a power savings mode when the resource availability of the one or more eNode Bs enables the plurality of UEs to be handed over from the serving eNode B to selected eNode Bs of the one or more eNode Bs.
Abstract:
Techniques for efficient small cell discovery are described. In one embodiment, for example, an evolved node B (eNB) may comprise logic, at least a portion of which is in hardware, the logic to determine a discovery signal transmission schedule for a series of radio frames based on a discovery signal muting pattern specifying at least one discovery-muted radio frame among the series of radio frames, and a transceiver to transmit at least one primary synchronization signal (PSS) and at least one secondary synchronization signal (SSS) during the series of radio frames according to the discovery signal transmission schedule. Other embodiments are described and claimed.
Abstract:
Various embodiments include devices, methods, computer-readable media and system configurations for reference signal generation and resource allocation. In various embodiments, a wireless communication device may include a control module, which may be operated by a processor and configured to transmit to a user equipment (“UE”) device, over a wireless communication interface, a parameter specific to the UE device; wherein the parameter is usable by the eNB to generate a user equipment-specific reference signal (“UE-RS”) to be sent to the UE device. The parameter may be usable by the UE device to identify the UE-RS to facilitate demodulation of multiple-input, multiple-output communications. In various embodiments, a control module may be configured to store, in memory, priority rules, and to determine a UE-RS resource allocated to another UE device based on a UE-RS resource allocated to the UE device and the priority rules.
Abstract:
An apparatus includes a processor a channel state information (CSI) module operative on the processor to evaluate channel state information for a multiplicity of transmission points and to allocate a selection of channel state information reference signals (CSI-RS) to an uplink sub-frame allotted for transmitting channel quality/precoding matrix index/rank indicator (CQI/PMI/RI) information to a transmission point. The apparatus may further include a wireless transceiver operative to transmit the selection of CSI-RS in the uplink sub-frame to the transmission point in a wireless network, and receive information from the transmission point in response to the CSI-RS and a digital display operative to present the information received from the transmission point.
Abstract:
Uplink communication techniques for non-ideal backhaul scenarios are described. In one embodiment, for example, user equipment (UE) may comprise logic, at least a portion of which is in hardware, the logic to receive an uplink (UL) communication process configuration message identifying a configured UL communication process for the UE, the UL communication process configuration message comprising a cell identifier and one or more configuration information elements (IEs), each configuration IE comprising configuration information for UL communications on the part of the UE, the logic to send a UL message based on the configuration information comprised in at least one of the configuration IEs. Other embodiments are described and claimed.
Abstract:
An apparatus includes a processor a channel state information (CSI) module operative on the processor to evaluate channel state information for a multiplicity of transmission points and to allocate a selection of channel state information reference signals (CSI-RS) to an uplink sub-frame allotted for transmitting channel quality/precoding matrix index/rank indicator (CQI/PMI/RI) information to a transmission point. The apparatus may further include a wireless transceiver operative to transmit the selection of CSI-RS in the uplink sub-frame to the transmission point in a wireless network, and receive information from the transmission point in response to the CSI-RS and a digital display operative to present the information received from the transmission point.
Abstract:
Technology for periodic channel state information (CSI) reporting using a physical uplink control channel (PUCCH) is disclosed. One method can include a user equipment (UE) generating a CSI report with a physical uplink control channel (PUCCH) first reporting type and a CSI report with a PUCCH second reporting type; and dropping a CSI report with the PUCCH first reporting type of a serving cell when the CSI report with the PUCCH first reporting type has a collision with the CSI report with PUCCH second reporting type of the serving cell. The PUCCH first reporting type can have a lower priority level than the PUCCH second reporting type.
Abstract:
An apparatus and system to compensate for phase noise in a 5G or 6G DFT-S-OFDM signal are described. An access port (AP)-specific orthogonal cover code (OCC) is applied to phase tracking reference signal (PTRS) symbols in each of a plurality of PTRS groups. The PTRS group are inserted between data symbols to form a data vector prior to perform transform precoding, on the data vector and transmission to a UE. The UE extracts the PTRS symbols from different PTRS APs using the OCC specific to each AP. After extraction, the phase noise for each PTRS group is estimated and used to compensate the data symbols associated with the PTRS group.
Abstract:
An eNodeB (eNB), user equipment (UE) and method for operating in enhanced coverage (EC) modes are generally described. The UE may receive one or more physical broadcast channel (PBCH) signals, dependent on whether the UE is in a normal coverage mode or in one of the EC modes. The PBCH signal may be combined to form a combined PBCH signal, when the UE is in an EC mode, and decoded to determine one of a plurality of sets of resource regions associated different EC modes for communication with the eNB. The signal may be scrambled using a Radio Network Temporary Identifier (RNTI) dependent on at least one of a signal type of the control signal and the EC mode. Paging and the system information block (SIB) signals in a Physical Downlink Shared Channel (PDSCH) may be decoded without decoding a physical downlink control channel (PDCCH) signal associated with the PDSCH.
Abstract:
In embodiments, an eNodeB (eNB) may include a sequence generator to identify an initialization parameter for a pseudo-random sequence. The initialization parameter may have a periodicity greater than one radio frame of a radio signal. The sequence generator may then generated a pseudo-random sequence based at least in part on the initialization parameter, and then generate a reference signal based on the pseudo-random sequence. The eNB may further include a transmitter that is coupled with the sequence generator and is to transmit the reference signal in a subframe of the radio signal.