Abstract:
Systems and methods for controlling operation of dual fuel internal combustion engines in response to cylinder pressure based determinations are disclosed. The techniques control fuelling contributions from a first fuel source and a second fuel source to achieve desired operational outcomes in response to the cylinder pressure based determinations.
Abstract:
Unique apparatuses, systems, methods, and techniques for control of engine systems are disclosed. One embodiment is a unique controls process providing engine start/stop functionality. In one form, the controls process includes engine stop controls which evaluate a plurality of engine stop request conditions and a plurality of engine stop capability conditions, as well as engine start controls which evaluate a plurality of engine start request conditions and a plurality of engine start capability conditions.
Abstract:
Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fuelling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fuelling amounts are controlled to improve operational outcomes of the duel fuel engine.
Abstract:
Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fuelling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fuelling amounts are controlled to improve operational outcomes of the duel fuel engine.
Abstract:
A system and method are disclosed for desulfating an oxidation catalyst in an aftertreatment system of a multifuel internal combustion engine. The oxidation catalyst can be desulfated in response to one or more desulfation triggering events. The desulfation process includes providing hydrocarbons from one or all of the multiple fuel sources to an upstream oxidation catalyst. The hydrocarbons react with the exhaust gas within the upstream oxidation catalyst to deplete oxygen in the exhaust flow to thereby reduce the desulfation temperature of the oxidation catalyst while elevating a temperature of the exhaust gas to a desulfation temperature range.
Abstract:
Systems and methods for controlling operation of dual fuel internal combustion engines in response to cylinder pressure based determinations are disclosed. The techniques control fueling contributions from a first fuel source and a second fuel source to achieve desired operational outcomes in response to the cylinder pressure based determinations.
Abstract:
The present disclosure relates to dual fuel internal combustion engines with multiple cylinder banks and/or cylinder subsets, and exhaust aftertreatment systems associated therewith. Systems and methods are disclosed that relate to engine operations involving fuelling control for fuel cutout of one or more of the cylinder banks and/or cylinder subsets in response to a fuel cutout event to increase gaseous fuel substitution on the other cylinder banks and/or cylinder subsets to satisfy the torque request and thermal management conditions of the aftertreatment system.
Abstract:
Systems and methods for controlling operation of dual fuel internal combustion engines in response to cylinder pressure based determinations are disclosed. The techniques control fueling contributions from a first fuel source and a second fuel source to achieve desired operational outcomes in response to the cylinder pressure based determinations.
Abstract:
Unique apparatuses, systems, methods, and techniques for control of engine systems are disclosed. One embodiment is a unique controls process providing engine start/stop functionality. In one form, the controls process includes engine stop controls which evaluate a plurality of engine stop request conditions and a plurality of engine stop capability conditions, as well as engine start controls which evaluate a plurality of engine start request conditions and a plurality of engine start capability conditions.
Abstract:
Systems, methods and apparatus are disclosed for thermal management of an SCR catalyst in an exhaust aftertreatment system of an internal combustion engine that includes an exhaust throttle but lacks a particulate filter. The thermal management can include interpreting, initiating, and/or completing a thermal management event for the SCR catalyst for removal of contaminants such as hydrocarbons and urea deposits. The thermal management event includes at least one of closing the exhaust throttle and increasing the thermal output of the engine to expose the SCR catalyst to a sufficiently high temperature over a time period that desorbs a sufficient amount of the hydrocarbons and/or removes a sufficient amount of the urea deposits to restore SCR catalyst performance.