Abstract:
A manufacturing method of a semiconductor device including arranging a compound semiconductor above a stage of a chamber, supplying an etching gas into the chamber, and generating a plasma in the chamber is provided. The compound semiconductor includes a group-III element nitride as a main component. A surface of the compound semiconductor is processed by a dry etching. Light is irradiated into the chamber during the generating of the plasma. A dry etching apparatus including a chamber including a stage, on which a compound semiconductor is mounted, and a light source irradiating light into the chamber is provided. The chamber is supplied with an etching gas. A plasma is generated in the chamber. A surface of the compound semiconductor is an object of a dry etching.
Abstract:
A semiconductor chip includes a chip constituent substrate having a first surface and a second surface, and including a layer containing gallium nitride. The chip constituent substrate is provided with a semiconductor element, and components constituting the semiconductor element are located more in an area adjacent to the first surface than in an area adjacent to the second surface. The chip constituent substrate is formed with a through hole penetrating the chip constituent substrate from the first surface to the second surface. The through hole defines a first opening adjacent to the first surface and a second opening adjacent to the second surface, and the first opening is larger than the second opening.
Abstract:
In a semiconductor device, a gate insulating film is provided with a multi-layer structure including a first insulating film and a second insulating film. The first insulating film is formed of an insulating film containing an element having an oxygen binding force larger than that of an element contained in the second insulating film, and the total charge amount is increased. Specifically, by performing oxygen anneal, it is possible to perform the step of supplying oxygen into an aluminum oxide film and increase the total charge amount. This allows a negative fixed charge density in the gate insulating film in the vicinity of an interface with a GaN layer to be set to a value of not less than 2.5×1011 cm−2 and allows a normally-off element to be reliably provided.
Abstract:
In a semiconductor device, an AlGaN layer includes a first AlGaN layer and a second AlGaN layer. The second AlGaN layer is positioned between a gate structure portion and a drain electrode and is divided into multiple parts in an arrangement direction in which the gate structure portion and the drain electrode are arranged. A second Al mixed crystal ratio of the second AlGaN layer is less than a first Al mixed crystal ratio of the first AlGaN layer. Accordingly, the semiconductor device is a normally-off-type device and is capable of restricting a decrease of a breakdown voltage and an increase of an on-resistance.
Abstract:
A step-flow growth of a group-III nitride single crystal on a silicon single crystal substrate is promoted. A layer of oxide oriented to a axis of silicon single crystal is formed on a surface of a silicon single crystal substrate, and group-III nitride single crystal is crystallized on a surface of the layer of oxide. Thereupon, a axis of the group-III nitride single crystal undergoing crystal growth is oriented to a c-axis of the oxide. When the silicon single crystal substrate is provided with a miscut angle, step-flow growth of the group-III nitride single crystal occurs. By deoxidizing a silicon oxide layer formed at an interface of the silicon single crystal and the oxide, orientation of the oxide is improved.