Abstract:
In-situ melting and crystallization of sealed cooper wires can be performed by means of laser annealing for a duration of nanoseconds. The intensity of the laser irradiation is selected such that molten copper wets interconnect interfaces, thereby forming an interfacial bonding arrangement that increases specular scattering of electrons. Nanosecond-scale temperature quenching preserves the formed interfacial bonding. At the same time, the fast crystallization process of sealed copper interconnects results in large copper grains, typically larger than 80 nm in lateral dimensions, on average. A typical duration of the annealing process is from about 10's to about 100's of nanoseconds. There is no degradation to interlayer low-k dielectric material despite the high anneal temperature due to ultra short duration that prevents collective motion of atoms within the dielectric material.
Abstract:
Hybrid metal-graphene interconnect structures and methods of forming the same. The structure may include a first end metal, a second end metal, a conductive line including one or more graphene portions extending from the first end metal to the second end metal, and one or more line barrier layers partially surrounding each of the one or more graphene portions. The conductive line may further include one or more intermediate metals separating each of the one or more graphene portions. Methods of forming said interconnect structures may include forming a plurality of metals including a first end metal and a second end metal in a dielectric layer, forming one or more line trenches between each of the plurality of metals, forming a line barrier layer in each of the one or more line trenches, and filling the one or more line trenches with graphene.
Abstract:
An aspect of the disclosure is directed to a method of forming an interconnect for use in an integrated circuit. The method comprises: forming an opening in a dielectric layer on a substrate; filling the opening with a metal such that an overburden outside of the opening is created; subjecting the metal to a microwave energy dose such that atoms from the overburden migrate to within the opening; and planarizing the metal to a top surface of the opening to remove the overburden, thereby forming the interconnect.
Abstract:
In-situ melting and crystallization of sealed cooper wires can be performed by means of laser annealing for a duration of nanoseconds. The intensity of the laser irradiation is selected such that molten copper wets interconnect interfaces, thereby forming an interfacial bonding arrangement that increases specular scattering of electrons. Nanosecond-scale temperature quenching preserves the formed interfacial bonding. At the same time, the fast crystallization process of sealed copper interconnects results in large copper grains, typically larger than 80 nm in lateral dimensions, on average. A typical duration of the annealing process is from about 10's to about 100's of nanoseconds. There is no degradation to interlayer low-k dielectric material despite the high anneal temperature due to ultra short duration that prevents collective motion of atoms within the dielectric material.
Abstract:
Aspects of the present disclosure include a method of forming a semiconductor interconnect structure and the interconnect structure. The method includes etching an opening in a first interconnect dielectric material. The method includes performing a nitridation process that converts the surfaces of the opening into nitride residues, and forms a nitrided interconnect dielectric material surface in the opening. The method includes depositing tantalum to create a tantalum layer on the nitrided interconnect dielectric surface region. The method includes depositing copper to fill the opening and planarizing the surface of the first dielectric material.
Abstract:
A semiconductor device includes a first circuit structure and a second circuit structure. The first circuit structure includes a wiring line and a via upon and electrically contacting the wiring line. The via induces lateral etching voids between the via and the wiring line below the via upon the surface of the wiring line. The second circuit structure includes a similar wiring line, relative to the reference wiring line, without or fewer via thereupon. The first circuit structure is therefore relatively more prone to lateral etching void formation as compared to the second circuit structure. Resistances are measured across the first circuit structure and the second circuit structure and compared against a comparison threshold to determine whether the first circuit structure includes one or more lateral etching voids. If the first structure is deemed to not include lateral etching voids, the fabrication process of the device may be deemed reliable.
Abstract:
Aspects of the present disclosure include integrated circuit (IC) structures with metal plugs therein, and methods of forming the same. An IC fabrication method according to embodiments of the present disclosure can include: providing a structure including a via including a bulk semiconductor material therein, wherein the via further includes a cavity extending from a top surface of the via to an interior surface of the via, and wherein a portion of the bulk semiconductor material defines at least one sidewall of the cavity; forming a first metal level on the via, wherein the first metal level includes a contact opening positioned over the cavity of the via; forming a metal plug within the cavity to the surface of the via, such that the metal plug conformally contacts a sidewall of the cavity and the interior surface of the via, wherein the metal plug is laterally distal to an exterior sidewall of the via; and forming a contact within the contact opening of the first metal level.
Abstract:
Aspects of the present disclosure include a method of forming a semiconductor interconnect structure and the interconnect structure. The method includes etching an opening in a first interconnect dielectric material. The method includes performing a nitridation process that converts the surfaces of the opening into nitride residues, and forms a nitrided interconnect dielectric material surface in the opening. The method includes depositing tantalum to create a tantalum layer on the nitrided interconnect dielectric surface region. The method includes depositing copper to fill the opening and planarizing the surface of the first dielectric material.
Abstract:
An method including forming multiple interconnect levels on top of one another, each level comprising a metal interconnect and a crack stop both embedded in a dielectric layer, and a dielectric capping layer directly on top of the dielectric layer and directly on top of the metal interconnect, the crack stop is an air gap which intersects an interface between the dielectric layer and the dielectric capping layer of each interconnect level, and forming a through substrate via through the multiple interconnect levels adjacent to, but not in direct contact with, the crack stop, the crack stop of each interconnect level is directly between the metal interconnect of each interconnect level and the through substrate via to prevent cracks caused during fabrication from propagating away from the through substrate via and damaging the metal interconnect.
Abstract:
A structure including an Mx level including a first Mx metal, a second Mx metal, and a third Mx metal abutting and electrically connected in sequence with one another, the second Mx metal including graphene, and an Mx+1 level above the Mx level, the Mx+1 level including an Mx+1 metal and a via, the via electrically connects the third Mx metal to the Mx+1 metal in a vertical orientation.