Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method is provided for fabricating an integrated circuit. The method includes forming a first FET trench in a first FET region and a second FET trench in a second FET region of an interlayer dielectric material on a semiconductor substrate, at least partially filling the first and second FET trenches with a work function metal to form a work function metal layer, and at least partially removing a portion of the work function metal layer in the second FET trench. The first FET trench is defined as an NFET trench and the second FET trench is defined as a PFET trench.
Abstract:
Integrated circuits with relaxed silicon and germanium fins and methods for fabricating such integrated circuits are provided. The method includes a forming a crystalline silicon and germanium composite layer overlying a crystalline silicon substrate, where a composite layer crystal lattice is relaxed. A fin is formed in the composite layer, and a gate is formed overlying the fin. A portion of the fin is removed on opposite sides of the gate to form a drain cavity and a source cavity, and a source and a drain are formed in the source cavity and drain cavity, respectively.
Abstract:
Transistor structures and methods of fabricating transistor structures are provided. The methods include: fabricating a transistor structure at least partially within a substrate, the fabricating including: providing a cavity within the substrate; and forming a first portion and a second portion of the transistor structure at least partially within the cavity, the first portion being disposed at least partially between the substrate and the second portion, where the first portion inhibits diffusion of material from the second portion into the substrate. In one embodiment, the transistor structure is a field-effect transistor structure, and the first portion and the second portion include one of a source region or a drain region of the field-effect transistor structure. In another embodiment, the transistor structure is a bipolar junction transistor structure.
Abstract:
Transistor structures and methods of fabricating transistor structures are provided. The methods include: fabricating a transistor structure at least partially within a substrate, the fabricating including: providing a cavity within the substrate; and forming a first portion and a second portion of the transistor structure at least partially within the cavity, the first portion being disposed at least partially between the substrate and the second portion, where the first portion inhibits diffusion of material from the second portion into the substrate. In one embodiment, the transistor structure is a field-effect transistor structure, and the first portion and the second portion include one of a source region or a drain region of the field-effect transistor structure. In another embodiment, the transistor structure is a bipolar junction transistor structure.
Abstract:
A method includes forming a fin in a semiconductor substrate. A plurality of sacrificial gate structures are formed above the fin. A selected one of the sacrificial gate structures is removed to define a first opening that exposes a portion of the fin. An etch process is performed through the first opening on the exposed portion of the fin to define a first recess in the fin. The first recess is filled with a dielectric material to define a diffusion break in the fin. A device includes a fin defined in a substrate, a plurality of gates formed above the fin, a plurality of recesses filled with epitaxial material defined in the fin, and a diffusion break defined at least partially in the fin between two of the recesses filled with epitaxial material and extending above the fin.
Abstract:
A method includes forming at least one fin in a semiconductor substrate. A placeholder gate structure is formed above the fin. The placeholder gate structure includes a placeholder material and a cap structure defined on a top surface of the placeholder material. The cap structure includes a first cap layer disposed above the placeholder material and a second cap layer disposed above the first cap layer. An oxidization process is performed on at least a portion of the second cap layer to form an oxidized region above a remaining portion of the second cap layer. A portion of the oxidized region is removed to expose the remaining portion. The remaining portion of the second cap layer is removed. The first cap layer is removed to expose the placeholder material. The placeholder material is replaced with a conductive material.
Abstract:
Devices and methods for forming semiconductor devices with FinFETs are provided. One method includes, for instance: obtaining an intermediate semiconductor device with a substrate and at least one shallow trench isolation region; depositing a hard mask layer over the intermediate semiconductor device; etching the hard mask layer to form at least one fin hard mask; and depositing at least one sacrificial gate structure over the at least one fin hard mask and at least a portion of the substrate. One intermediate semiconductor device includes, for instance: a substrate with at least one shallow trench isolation region; at least one fin hard mask over the substrate; at least one sacrificial gate structure over the at least one fin hard mask; at least one spacer disposed on the at least one sacrificial gate structure; and at least one pFET region and at least one nFET region grown into the substrate.
Abstract:
A non-planar transistor is fabricated with dummy or sacrificial epitaxy and a structure for subsequent replacement or final epitaxy containment is created around the sacrificial epitaxy. The dummy epitaxy is then removed and replaced with the replacement epitaxy. The containment structure allows for uniform growth of the replacement epitaxy and prevents merger. Where n-type and p-type structures are present, the replacement epitaxy process is performed for each type, while protecting the other type with a mask. Optionally, one of the replacement epitaxies, i.e., the one for n-type or p-type, may be used as the dummy epitaxy, resulting in the need for only one mask.
Abstract:
Methods of facilitating fabrication of defect-free semiconductor structures are provided which include, for instance: providing a dielectric layer, the dielectric layer comprising at least one consumable material; selectively removing a portion of the dielectric layer, wherein the selectively removing consumes, in part, a remaining portion of the at least one consumable material, leaving, within the remaining portion of the dielectric layer, a depleted region; and subjecting the depleted region of the dielectric layer to a treatment process, to restore the depleted region with at least one replacement consumable material, thereby facilitating fabrication of a defect-free semiconductor structure.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes etching an enhanced high-aspect-ratio process (eHARP) oxide fill that is disposed in an STI trench between two adjacent fins to form a recessed eHARP oxide fill. The two adjacent fins extend from a bulk semiconductor substrate. A silicon layer is formed overlying the recessed eHARP oxide fill. The silicon layer is converted to a thermal oxide layer to further fill the STI trench with oxide material.