Abstract:
A dielectric metal compound liner can be deposited on a semiconductor fin prior to formation of a disposable gate structure. The dielectric metal compound liner protects the semiconductor fin during the pattering of the disposable gate structure and a gate spacer. The dielectric metal compound liner can be removed prior to formation of source and drain regions and a replacement gate structure. Alternately, a dielectric metal compound liner can be deposited on a semiconductor fin and a gate stack, and can be removed after formation of a gate spacer. Further, a dielectric metal compound liner can be deposited on a semiconductor fin and a disposable gate structure, and can be removed after formation of a gate spacer and removal of the disposable gate structure. The dielectric metal compound liner can protect the semiconductor fin during formation of the gate spacer in each embodiment.
Abstract:
A method including providing a semiconductor substrate including a first semiconductor device and a second semiconductor device, the first and second semiconductor devices including dummy spacers, dummy gates, and extension regions; protecting the second semiconductor device with a mask; removing the dummy spacers from the first semiconductor device; and depositing in-situ doped epitaxial regions on top of the extension regions of the first semiconductor device.
Abstract:
A planar semiconductor device including a semiconductor on insulator (SOI) substrate with source and drain portions having a thickness of less than 10 nm that are separated by a multi-layered strained channel. The multi-layer strained channel of the SOI layer includes a first layer with a first lattice dimension that is present on the buried dielectric layer of the SOI substrate, and a second layer of a second lattice dimension that is in direct contact with the first layer of the multi-layer strained channel portion. A functional gate structure is present on the multi-layer strained channel portion of the SOI substrate. The semiconductor device having the multi-layered channel may also be a finFET semiconductor device.
Abstract:
An improved finFET and method of fabrication is disclosed. Embodiments of the present invention take advantage of the different epitaxial growth rates of {110} and {100} silicon. Fins are formed that have {110} silicon on the fin tops and {100} silicon on the long fin sides (sidewalls). The lateral epitaxial growth rate is faster than the vertical epitaxial growth rate. The resulting merged fins have a reduced merged region in the vertical dimension, which reduces parasitic capacitance. Other fins are formed with {110} silicon on the fin tops and also {110} silicon on the long fin sides. These fins have a slower epitaxial growth rate than the {100} side fins, and remain unmerged in a semiconductor integrated circuit, such as an SRAM circuit.
Abstract:
A dielectric metal compound liner can be deposited on a semiconductor fin prior to formation of a disposable gate structure. The dielectric metal compound liner protects the semiconductor fin during the pattering of the disposable gate structure and a gate spacer. The dielectric metal compound liner can be removed prior to formation of source and drain regions and a replacement gate structure. Alternately, a dielectric metal compound liner can be deposited on a semiconductor fin and a gate stack, and can be removed after formation of a gate spacer. Further, a dielectric metal compound liner can be deposited on a semiconductor fin and a disposable gate structure, and can be removed after formation of a gate spacer and removal of the disposable gate structure. The dielectric metal compound liner can protect the semiconductor fin during formation of the gate spacer in each embodiment.
Abstract:
A dielectric metal compound liner can be deposited on a semiconductor fin prior to formation of a disposable gate structure. The dielectric metal compound liner protects the semiconductor fin during the pattering of the disposable gate structure and a gate spacer. The dielectric metal compound liner can be removed prior to formation of source and drain regions and a replacement gate structure. Alternately, a dielectric metal compound liner can be deposited on a semiconductor fin and a gate stack, and can be removed after formation of a gate spacer. Further, a dielectric metal compound liner can be deposited on a semiconductor fin and a disposable gate structure, and can be removed after formation of a gate spacer and removal of the disposable gate structure. The dielectric metal compound liner can protect the semiconductor fin during formation of the gate spacer in each embodiment.
Abstract:
A FET structure including epitaxial source and drain regions includes large contact areas and exhibits both low resistivity and low parasitic gate to source/drain capacitance. The source and drain regions are laterally etched to provide recesses for accommodating low-k dielectric material without compromising the contact area between the source/drain regions and their associated contacts. A high-k dielectric layer is provided between the raised source/drain regions and a gate conductor as well as between the gate conductor and a substrate, such as an ETSOI or PDSOI substrate. The structure is usable in electronic devices such as MOSFET devices.
Abstract:
An electrical device is provided that includes a substrate having an upper semiconductor layer, a buried dielectric layer and a base semiconductor layer. At least one isolation region is present in the substrate that defines a semiconductor device region and a resistor device region. The semiconductor device region includes a semiconductor device having a back gate structure that is present in the base semiconductor layer. Electrical contact to the back gate structure is provided by doped epitaxial semiconductor pillars that extend through the buried dielectric layer. An epitaxial semiconductor resistor is present in the resistor device region. Undoped epitaxial semiconductor pillars extending from the epitaxial semiconductor resistor to the base semiconductor layer provide a pathway for heat generated by the epitaxial semiconductor resistor to be dissipated to the base semiconductor layer. The undoped and doped epitaxial semiconductor pillars are composed of the same epitaxial semiconductor material.
Abstract:
FinFET structures and methods of formation are disclosed. Fins are formed on a bulk substrate. A crystalline insulator layer is formed on the bulk substrate with the fins sticking out of the epitaxial oxide layer. A gate is formed around the fins protruding from the crystalline insulator layer. An epitaxially grown semiconductor region is formed in the source drain region by merging the fins on the crystalline insulator layer to form a fin merging region.
Abstract:
A semiconductor device including at least two fin structures on a substrate surface and a functional gate structure present on the at least two fin structures. The functional gate structure includes at least one gate dielectric that is in direct contact with at least the sidewalls of the two fin structures, and at least one gate conductor on the at least one gate dielectric. The sidewall of the gate structure is substantially perpendicular to the upper surface of the substrate surface, wherein the plane defined by the sidewall of the gate structure and a plane defined by an upper surface of the substrate surface intersect at an angle of 90°+/−5°. An epitaxial semiconductor material is in direct contact with the at least two fin structures.