Abstract:
A method of forming semiconductor fins having different fin heights and which are dielectrically isolated from an underlying semiconductor substrate. The fins may be formed by etching an active epitaxial layer that is disposed over the substrate. An intervening sacrificial epitaxial layer may be used to template growth of the active epitaxial layer, and is then removed and backfilled with an isolation dielectric layer. The isolation dielectric layer may be disposed between bottom surfaces of the fins and the substrate, and may be deposited, for example, following the etching process used to define the fins. Within different regions of the substrate, dielectrically isolated fins of different heights may have substantially co-planar top surfaces.
Abstract:
Methods are provided for dimension-controlled via formation over a circuit structure, including over multiple adjacent conductive structures. The method(s) includes, for instance, providing a patterned multi-layer stack structure above the circuit structure, the stack structure including at least one layer, and a pattern transfer layer above the at least one layer, the pattern transfer layer being patterned with at least one via opening; providing a sidewall spacer layer within the at least one via opening to form at least one dimension-controlled via opening; and etching through the at least one layer of the stack structure using the at least one dimension-controlled via opening to facilitate providing the via(s) over the circuit structure. In one implementation, the stack structure includes a trench-opening within a patterned hard mask layer disposed between a dielectric layer and a planarization layer, and the via(s) is partially self-aligned to the trench.
Abstract:
Approaches for providing a planar metrology pad adjacent a set of fins of a fin field effect transistor (FinFET) device are disclosed. A previously deposited amorphous carbon layer can be removed from over a mandrel that has been previously formed on a subset of a substrate, such as using a photoresist. A pad hardmask can be formed over the mandrel on the subset of the substrate. This formation results in the subset of the substrate having the pad hardmask covering the mandrel thereon and the remainder of the substrate having the amorphous carbon layer covering the mandrel thereon. This amorphous carbon layer can be removed from over the mandrel on the remainder of the substrate, allowing a set of fins to be formed therein while the amorphous carbon layer keeps the set of fins from being formed in the portion of the substrate that it covers.
Abstract:
Structures that include a metal-insulator-metal (MIM) capacitor and methods for fabricating a structure that includes a MIM capacitor. The MIM capacitor includes a first electrode, a second electrode, and a third electrode. A conductive via is arranged in a via opening extending in a vertical direction through at least the first electrode. The first electrode has a surface arranged inside the via opening in a plane transverse to the vertical direction, and the conductive via contacts the first electrode over an area of the surface.
Abstract:
At least one method, apparatus and system is disclosed herein for forming a fin field effect transistor (finFET) device having a reduced breakdown voltage. The method comprises forming a first gate structure on a substrate of a semiconductor wafer in a first layer, the gate structure extending to a height of about h above the substrate. A trench is formed in the first layer adjacent the first gate structure and extends from a height of about d to the substrate. A connector is formed in the trench between the substrate and a layer of the finFET above the first layer. The process of forming the connector comprises; forming a thin film oxide on the sidewalls of the trench extending from a height below h to about d; forming a liner in the trench, extending over the substrate and on the sidewalls to about the height d over the thin film oxide and forming a layer of tungsten in the trench over the liner.
Abstract:
Methods for fabricating a layered circuit structure are provided, which include, for instance: depositing a first material layer above a substrate, the first material layer having an oxidized upper surface; providing a second material layer over the oxidized upper surface of the first material layer; and inhibiting diffusion of one or more elements from the oxidized upper surface of the first material layer into either the first material layer or the second material layer during the providing of the second material layer over the oxidized upper surface of the first material layer. The inhibiting may include one or more of modifying a characteristic(s) of the first material layer, forming a protective layer over the oxidized upper surface of the first material layer, or altering at least one process parameter employed in providing the second material layer.
Abstract:
Processes for preparing an integrated circuit for contact landing, processes for fabricating an integrated circuit, and integrated circuits prepared according to these processes are provided herein. An exemplary process for preparing an integrated circuit for contact landing includes providing a semiconductor structure that includes a transistor with source and drain regions, wherein at least one of the source and drain regions has a shaped contact structure overlaid with a contact etch stop layer and a pre-metal dielectric material. The pre-metal dielectric material is removed with one or more anisotropic etches, including at least one anisotropic etch selective to the pre-metal dielectric material. And, the contact etch stop layer overlaying the shaped contact structure is removed with a third anisotropic etch selective to the contact etch stop layer material to expose the shaped contact structure.
Abstract:
A structure includes a first dielectric over a trench silicide (TS) contact and over a gate structure, and at least one cavity in the first dielectric. A metal resistor layer is on a bottom and sidewalls of the at least one cavity and extends over the first dielectric. A first contact is on the metal resistor layer over the first dielectric; and a second contact is on the metal resistor layer over the first dielectric. The metal resistor layer is over the TS contact and over the gate structure. Where a plurality of cavities are provided in the dielectric, a resistor structure formed by the metal resistor layer may have an undulating cross-section over the plurality of cavities and the dielectric.
Abstract:
Methods of forming a structure for a vertical-transport field-effect transistor. A semiconductor fin is formed over a sacrificial layer. A support structure is connected with the semiconductor fin. After forming the support structure, the sacrificial layer is removed to form a cavity extending beneath the semiconductor fin. A semiconductor material is epitaxially grown in the cavity to form a source/drain region of the vertical-transport field-effect transistor.
Abstract:
At least one method, apparatus and system is disclosed herein for forming a fin field effect transistor (finFET) device having a reduced breakdown voltage. The method comprises forming a first gate structure on a substrate of a semiconductor wafer in a first layer, the gate structure extending to a height of about h above the substrate. A trench is formed in the first layer adjacent the first gate structure and extends from a height of about d to the substrate. A connector is formed in the trench between the substrate and a layer of the finFET above the first layer. The process of forming the connector comprises; forming a thin film oxide on the sidewalls of the trench extending from a height below h to about d; forming a liner in the trench, extending over the substrate and on the sidewalls to about the height d over the thin film oxide and forming a layer of tungsten in the trench over the liner.