Abstract:
The present disclosure relates to a method for integrating a sub-micron III-V waveguide laser on a semiconductor photonics platform as well as to a corresponding device/system. The method comprises providing on a semiconductor substrate an electrically insulating layer, etching a trench having a width in the range between 50 nm and 800 nm through the electrically insulating layer, thereby locally exposing the silicon substrate, providing a III-V layer stack in the trench by local epitaxial growth to form a channel waveguide, and providing a light confinement element for confining radiation in the local-epitaxial-grown channel waveguide.
Abstract:
A silicon-based photonic chip is provided that includes an interface for optically coupling the photonic chip to an optical fiber or an optical fiber assembly. The interface includes: a single-mode waveguide configured to guide light and to provide a first light beam; a first optical element configured to expand the light beam in a first direction in-plane of the photonic chip, thereby providing an expanded light beam; and a second optical element configured to deflect and to further expand the expanded light beam in a second direction, thereby providing an output light beam from the photonic chip. Also provided are methods for fabricating such a photonic chip.
Abstract:
An avalanche photodiode (APD) device, in particular, a lateral separate absorption charge multiplication (SACM) APD device, and a method for its fabrication is provided. The APD device comprises a first contact region and a second contact region formed in a semiconductor layer. Further, the APD device comprises an absorption region formed on the semiconductor layer, wherein the absorption region is at least partly formed on a first region of the semiconductor layer, wherein the first region is arranged between the first contact region and the second contact region. The APD device further includes a charge region formed in the semiconductor layer between the first region and the second contact region, and an amplification region formed in the semiconductor layer between the charge region and the second contact region. At least the absorption region is curved on the semiconductor layer.
Abstract:
A method is provided for fabricating an avalanche photodiode (APD) device, in particular, a separate absorption charge multiplication (SACM) APD device. The method includes forming a first contact region and a second contact region in a semiconductor layer. Further, the method includes forming a first mask layer above at least a first contact region of the semiconductor layer adjacent to the first contact region, and forming a second mask layer above and laterally overlapping the first mask layer. Thereby, a mask window is defined by the first mask layer and the second mask layer, and the first mask layer and/or the second mask layer are formed above a second contact region of the semiconductor layer adjacent to the second contact region. Further, the method includes forming a charge region in the semiconductor layer through the mask window, wherein the charge region is formed between the first contact region and the second contact region, and comprises forming an absorption region on the first contact region using the first mask layer. An APD fabricated by the disclosed method is also provided.
Abstract:
A III-V semiconductor waveguide nanoridge structure having a narrow supporting base with a freestanding wider body portion on top, is disclosed. In one aspect, the III-V waveguide includes a PIN diode. The waveguide comprises a III-V semiconductor waveguide core formed in the freestanding wider body portion; at least one heterojunction incorporated in the III-V semiconductor waveguide core; a bottom doped region of a first polarity positioned at a bottom of the narrow supporting base, forming a lower contact; and an upper doped region of a second polarity, forming an upper contact. The upper contact is positioned in at least one side wall of the freestanding wider body portion.
Abstract:
A solid-state device for photo detection, in general, of terahertz radiation is disclosed. One aspect is a detector device comprising a body having a photoconductive material, a first antenna element connected to a first portion of the body, and a second antenna element connected to a second portion of the body. The first antenna element and the second antenna element are arranged to induce an electric field in the body in response to an incident signal. Further, the device has a waveguide arranged to couple light into the photoconductive material via a coupling interface between the waveguide and the body, where the coupling interface faces away from the first portion and the second portion of the body and is closer to the first portion than to the second portion.
Abstract:
Example embodiments relate to active-passive waveguide photonic systems. An example embodiment includes a monolithic integrated active/passive waveguide photonic system. The system includes a substrate having positioned thereon at least one active waveguide and at least one passive waveguide. The at least one active waveguide and the at least one passive waveguide are monolithically integrated and are arranged for evanescent wave coupling between the waveguides. The at least one active waveguide and the at least one passive waveguide are positioned so that at least a portion of each waveguide does not overlap the other waveguide, both in a height direction and in a lateral direction with respect to the substrate.
Abstract:
An integrated avalanche photodetector and a method for fabrication thereof. The integrated avalanche photodetector comprises a Ge body adapted to conduct an optical mode. The Ge body comprises a first p-doped region that extends from a first main surface to a second main surface of the Ge body. The Ge body further comprises a first n-doped region that extends from the first main surface towards the second main surface of the Ge body. An intrinsic region occupies the undoped part of the Ge body. A first avalanche junction is formed by the first n-doped region that is located aside the p-doped region. The Ge body further comprises an incidence surface, suitable for receiving an optical mode, and a second n-doped Ge region that covers the Ge body and forms a second avalanche junction with the first p-doped region at the first main surface.
Abstract:
A monolithic integrated electro-optical phase modulator, a Mach-Zehnder modulator including one or more of the phase modulators, and method for fabricating the phase modulator by III-V-on-silicon semiconductor processing are provided. The phase modulator includes a silicon-based n-type substrate base layer, and a III-V n-type ridge waveguide for propagating light, wherein the ridge waveguide protrudes from and extends along the n-type substrate base layer. Further, the phase modulator includes one or more insulating layers provided on the ridge waveguide, wherein the one or more insulating layers have together a thickness of 1-100 nm, and a silicon-based p-type top cover layer provided on the one or more insulating layers at least above the ridge waveguide.
Abstract:
A monolithic integrated electro-optical phase modulator, a Mach-Zehnder modulator including one or more of the phase modulators, and method for fabricating the phase modulator by III-V-on-silicon semiconductor processing are provided. The phase modulator includes a silicon-based n-type substrate base layer, and a III-V n-type ridge waveguide for propagating light, wherein the ridge waveguide protrudes from and extends along the n-type substrate base layer. Further, the phase modulator includes one or more insulating layers provided on the ridge waveguide, wherein the one or more insulating layers have together a thickness of 1-100 nm, and a silicon-based p-type top cover layer provided on the one or more insulating layers at least above the ridge waveguide.