Abstract:
A method of separating individual dies of a semiconductor wafer includes forming a metal layer on a first surface of a semiconductor wafer, the semiconductor wafer including a plurality of dies, separating the plurality of dies from one another, and electrical discharge machining the metal layer into individual segments each of which remains attached to one of the dies. A corresponding semiconductor die produced by such a method is also provided.
Abstract:
In accordance with an alternative embodiment of the present invention, a method for forming a semiconductor device includes applying a paste over a semiconductor substrate, and forming a ceramic carrier by solidifying the paste. The semiconductor substrate is thinned using the ceramic carrier as a carrier.
Abstract:
A method for processing a semiconductor wafer in accordance with various embodiments may include: providing a semiconductor wafer including at least one chip and at least one kerf region adjacent to the at least one chip, the kerf region including at least one auxiliary structure; applying a mask layer to the semiconductor wafer; removing the at least one auxiliary structure in the at least one kerf region; removing the applied mask layer; and separating the semiconductor wafer along the at least one kerf region.
Abstract:
Methods for processing a semiconductor workpiece can include providing a semiconductor workpiece that includes one or more kerf regions; forming one or more trenches in the workpiece by removing material from the one or more kerf regions from a first side of the workpiece; mounting the workpiece with the first side to a carrier; thinning the workpiece from a second side of the workpiece; and forming a metallization layer over the second side of the workpiece.
Abstract:
A semiconductor device includes a silicon layer, a metal silicide layer arranged directly on the silicon layer, and a solder layer arranged directly on the metal silicide layer.
Abstract:
A system and method for manufacturing a packaged component are disclosed. An embodiment comprises forming a plurality of components on a carrier, the plurality of components being separated from each other by kerf regions on a front side of the carrier and forming a metal pattern on a backside of the carrier, wherein the metal pattern covers the backside of the carrier except over regions corresponding to the kerf regions. The method further comprises generating the component by separating the carrier.
Abstract:
An electronic component includes an electronic chip and a magnetic phase change material configured to consume energy when changing between different magnetic phases in response to heating above a phase change temperature. The phase change material is thermally coupled with the electronic chip to thereby dissipate heat from the electronic chip upon heating up to or above the phase change temperature.
Abstract:
An integrated circuit substrate and a method for manufacturing the same are disclosed. In an embodiment a method includes providing a wafer having a plurality of active areas, each active area being provided in a separate die area and for each active area, providing a code pattern outside the active area, the code pattern being associated with the die area.
Abstract:
The description discloses a method for use in manufacturing integrated circuit chips. The method comprises providing a wafer having a plurality of integrated circuits each provided in an separate active areas, and, for each active area, outside the active area, providing a code pattern that is associated with the integrated circuit. A computer-readable medium is also disclosed. Further, a manufacturing apparatus configured to receive a wafer and to remove material from the wafer so as to provide a scribe line to the wafer formed as a trench for use in separation of the wafer into dies is also disclosed. The description also discloses a wafer, an integrated circuit chip die substrate originating from a wafer of origin and carrying an integrated circuit, and an integrated circuit chip.
Abstract:
A segmented edge protection shield for plasma dicing a wafer. The segmented edge protection shield includes an outer structure and a plurality of plasma shield edge segments. The outer structure defines an interior annular edge configured to correspond to the circumferential edge of the wafer. Each one of the plurality of plasma shield edge segments is defined by an inner edge and side edges. The inner edge is interior to and concentric to the annular edge of the outer structure. The side edges extend between the inner edge and the annular edge.