Abstract:
A material stack is formed on the surface of a semiconductor substrate. The top layer of the material stack comprises at least an organic planarization layer. A neutral hard mask layer is formed on the top of the organic planarization layer. The neutral hard mask layer is neutral to the block copolymers used for direct self-assembly. A plurality of template etch stacks are then formed on top of the neutral hard mask layer. After formation of the template etch stacks, neutrality recovery is performed on the neutral hard mask layer and the top portions of the template etch stacks, the vertical sidewalls of the template etch stacks being substantially unaffected by the neutrality recovery. A template for DSA is thus obtained.
Abstract:
A post metal chemical-mechanical planarization (CMP) cleaning process for advanced interconnect technology is provided. The process, which follows CMP, combines an acidic clean and a basic clean in sequence. The process can achieve a more than 60% reduction in CMP defects, such as polish residues, foreign materials, slurry abrasives, scratches, and hollow metal, relative to an all-basic clean process. The process also eliminates the circular ring defects that occur intermittently during roller brush cleans within a roller brush clean module.
Abstract:
A bipolar junction transistor (LBJT) device that includes a base region of a first III-V semiconductor material having A first band gap; and emitter and collector regions present on opposing sides of the base region, wherein the emitter and collector regions are comprised of a second III-V semiconductor material having a wider band gap than the first III-V semiconductor material. A dielectric region is present underlying the base region, emitter region and the collect region. The dielectric region has an inverted apex geometry. The sidewalls of dielectric region that extend to the apex of the inverted apex geometry are present on facets of a supporting substrate III-V semiconductor material having a {110} crystalline orientation.
Abstract:
A bipolar junction transistor (LBJT) device that includes a base region of a first III-V semiconductor material having A first band gap; and emitter and collector regions present on opposing sides of the base region, wherein the emitter and collector regions are comprised of a second III-V semiconductor material having a wider band gap than the first III-V semiconductor material. A dielectric region is present underlying the base region, emitter region and the collect region. The dielectric region has an inverted apex geometry. The sidewalls of dielectric region that extend to the apex of the inverted apex geometry are present on facets of a supporting substrate III-V semiconductor material having a {110} crystalline orientation.
Abstract:
A semiconductor structure that includes: a substrate, a twin vertical punch-through stopper layer structure connected to the substrate, and a plurality of nanosheets connected to and supported by the twin vertical punch-through stopper structure and isolated from the substrate by an insulating dielectric.
Abstract:
A method for cleaning etch residues that may include treating an etched surface with an aqueous lanthanoid solution, wherein the aqueous lanthanoid solution removes an etch residue that includes a majority of hydrocarbons and at least one element selected from the group consisting of carbon, oxygen, fluorine, nitrogen and silicon. In one example, the aqueous solution may be cerium ammonium nitrate (Ce(NH4)(NO3)),(CAN).
Abstract:
A material stack is formed on the surface of a semiconductor substrate. The top layer of the material stack comprises at least an organic planarization layer. A neutral hard mask layer is formed on the top of the organic planarization layer. The neutral hard mask layer is neutral to the block copolymers used for direct self-assembly. A plurality of template etch stacks are then formed on top of the neutral hard mask layer. After formation of the template etch stacks, neutrality recovery is performed on the neutral hard mask layer and the top portions of the template etch stacks, the vertical sidewalls of the template etch stacks being substantially unaffected by the neutrality recovery. A template for DSA is thus obtained.
Abstract:
A method for cleaning etch residues that may include treating an etched surface with an aqueous lanthanoid solution, wherein the aqueous lanthanoid solution removes an etch residue that includes a majority of hydrocarbons and at least one element selected from the group consisting of carbon, oxygen, fluorine, nitrogen and silicon. In one example, the aqueous solution may be cerium ammonium nitrate (Ce(NH4)(NO3)),(CAN).
Abstract:
Cleaning solutions and processes for cleaning semiconductor devices or semiconductor tooling during manufacture thereof generally include contacting the semiconductor devices or semiconductor tooling with an acidic aqueous cleaning solution free of a fluorine containing compound, the acidic aqueous cleaning solution including at least one antioxidant and at least one non-oxidizing acid.
Abstract:
A bipolar junction transistor (LBJT) device that includes a base region of a first III-V semiconductor material having A first band gap; and emitter and collector regions present on opposing sides of the base region, wherein the emitter and collector regions are comprised of a second III-V semiconductor material having a wider band gap than the first III-V semiconductor material. A dielectric region is present underlying the base region, emitter region and the collect region. The dielectric region has an inverted apex geometry. The sidewalls of dielectric region that extend to the apex of the inverted apex geometry are present on facets of a supporting substrate III-V semiconductor material having a {110} crystalline orientation.