摘要:
A multilayer electrode structure has a conductive layer including aluminum, an oxide layer formed on the conductive layer, and an oxygen diffusion barrier layer. The oxide layer includes zirconium oxide and/or titanium oxide. The oxygen diffusion barrier layer is formed at an interface between the conductive layer and the oxide layer by re-oxidizing the oxide layer. The oxygen diffusion barrier layer includes aluminum oxide.
摘要:
The present invention provides methods of forming a metal oxide layer and methods of forming a capacitor including the same. The methods of forming the metal oxide include forming a thin layer including a metal oxide, such as zirconium oxide, on a substrate and performing a post-treatment on the thin layer at a temperature at which oxygen present in the metal oxide is hindered from being diffused in the thin layer. Consequently, reduced amounts of byproducts are present on the boundary surface of the thin layer and the substrate thereby improving electrical characteristics of the thin layer.
摘要:
A multilayer electrode structure has a conductive layer including aluminum, an oxide layer formed on the conductive layer, and an oxygen diffusion barrier layer. The oxide layer includes zirconium oxide and/or titanium oxide. The oxygen diffusion barrier layer is formed at an interface between the conductive layer and the oxide layer by re-oxidizing the oxide layer. The oxygen diffusion barrier layer includes aluminum oxide.
摘要:
In a method of forming a thin film and methods of manufacturing a gate structure and a capacitor, a hafnium precursor including one alkoxy group and three amino groups, and an oxidizing agent are provided on a substrate. The hafnium precursor is reacted with the oxidizing agent to form the thin film including hafnium oxide on the substrate. The hafnium precursor may be employed for forming a gate insulation layer of a transistor or a dielectric layer of a capacitor.
摘要:
An electronic device may include a substrate, an oxide dielectric layer on the substrate, an interface layer on the oxide dielectric layer, and an electrode on the interface layer. The oxide dielectric layer may include an aluminum oxide layer between first and second zirconium oxide layers. The interface layer may have a first formation enthalpy, and the oxide dielectric layer may be between the substrate and the interface layer. The electrode may have a second formation enthalpy higher than the first formation enthalpy, and the interface layer may be between the oxide dielectric layer and the electrode.
摘要:
A method of forming a semiconductor device includes loading a semiconductor substrate into a reaction chamber, and providing metal organic precursors including hafnium and zirconium into the reaction chamber to form hafnium-zirconium oxide (HfxZr1-xO; 0
摘要翻译:形成半导体器件的方法包括将半导体衬底装载到反应室中,并将含有铪和锆的金属有机前体提供到反应室中以形成铪锆氧化物(Hf x Zr z 1-x O; 0
摘要:
A multilayer electrode structure has a conductive layer including aluminum, an oxide layer formed on the conductive layer, and an oxygen diffusion barrier layer. The oxide layer includes zirconium oxide and/or titanium oxide. The oxygen diffusion barrier layer is formed at an interface between the conductive layer and the oxide layer by re-oxidizing the oxide layer. The oxygen diffusion barrier layer includes aluminum oxide.
摘要:
In a method of forming a thin film and methods of manufacturing a gate structure and a capacitor, a hafnium precursor including one alkoxy group and three amino groups, and an oxidizing agent are provided on a substrate. The hafnium precursor is reacted with the oxidizing agent to form the thin film including hafnium oxide on the substrate. The hafnium precursor may be employed for forming a gate insulation layer of a transistor or a dielectric layer of a capacitor.
摘要:
A semiconductor device includes a substrate having a field area that defines active areas, gate trenches in the substrate and extending in a first direction, a buried gate in a respective gate trench, gate capping fences in a respective gate trench over a respective buried gate, the gate capping fences protruding from top surfaces of the active areas and extending in the first direction, bit line trenches in the gate capping fences, a respective bit line trench crossing the gate capping fences and extending in a second direction perpendicular to the first direction, an insulator structure on inner walls of a respective bit line trench, bit lines and bit line capping patterns stacked on the insulator structures in a respective bit line trench, contact pads self-aligned with the gate capping fences and on the substrate between the adjacent bit lines, and a lower electrode of a capacitor on a respective contact pad.
摘要:
In one embodiment, a phase change memory device includes an insulation structure over a substrate. The insulation structure ahs an opening defined therethrough. A first layer pattern is formed on sidewalls and a bottom of the opening. A second layer pattern is formed on the first layer pattern and substantially fills the opening.