Abstract:
One embodiment provides an apparatus. The apparatus includes a first inverter comprising a first pull up transistor and a first pull down transistor; a second inverter cross coupled to the first inverter, the second inverter comprising a second pull up transistor and a second pull down transistor; a first access transistor coupled to the first inverter; and a second access transistor coupled to the second inverter. A gate electrode of one transistor of each inverter comprises a polarization layer.
Abstract:
Molecular Graphene (MG) of a physical size and bonding character that render the molecule suitable as a channel material in an electronic device, such as a tunnel field effect transistor (TFET). The molecular graphene may be a large polycyclic aromatic hydrocarbon (PAH) employed as a discrete element, or as a repeat unit, within an active or passive electronic device. In some embodiments, a functionalized PAH is disposed over a substrate surface and extending between a plurality of through-substrate vias. Heterogeneous surfaces on the substrate are employed to direct deposition of the functionalized PAH molecule to surface sites interstitial to the array of vias. Vias may be backfilled with conductive material as self-aligned source/drain contacts. Directed self-assembly techniques may be employed to form local interconnect lines coupled to the conductive via material. In some embodiments, graphene-based interconnects comprising a linear array of PAH molecules are formed over a substrate.
Abstract:
Fermi filter field effect transistors having a Fermi filter between a source and a source contact, systems incorporating such transistors, and methods for forming them are discussed. Such transistors may include a channel between a source and a drain both having a first polarity and a Fermi filter between the source and a source contact such that the Fermi filter has a second polarity complementary to the first polarity.
Abstract:
Described is an apparatus which comprises: an input magnet formed of one or more materials with a sufficiently high anisotropy and sufficiently low magnetic saturation to increase injection of spin currents; and a first interface layer coupled to the input magnet, wherein the first interface layer is formed of non-magnetic material such that the first interface layer and the input magnet together have sufficiently matched atomistic crystalline layers.
Abstract:
Embodiments of the invention include a resonant sensing system comprising driving circuitry to generate a drive signal during excitation time periods, a first switch coupled to the driving circuitry, and a sensing device coupled to the driving circuitry via the first switch during the excitation time periods. The sensing device includes beams to receive the drive signal during a first excitation time period that causes the beams to mechanically oscillate and generate a first induced electromotive force (emf) in response to the drive signal. The first switch decouples the sensing device and the driving circuitry during measurement time periods for measurement of the induced emf.
Abstract:
Tunneling field effect transistors (TFETs) with undoped drain underlap wrap-around regions are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region formed above a substrate. The homojunction active region includes a doped source region, an undoped channel region, a wrapped-around region, and a doped drain region. A gate electrode and gate dielectric layer are formed on the undoped channel region, between the source and wrapped-around regions.
Abstract:
One embodiment provides an apparatus. The apparatus includes a first inverter comprising a first pull up transistor and a first pull down transistor; a second inverter cross coupled to the first inverter, the second inverter comprising a second pull up transistor and a second pull down transistor; a first access transistor coupled to the first inverter; and a second access transistor coupled to the second inverter. A gate electrode of one transistor of each inverter comprises a polarization layer.
Abstract:
A memory device comprises a trench within an insulating layer. A bottom electrode material is along sidewalls and a bottom of the trench, the bottom electrode material conformal to a top surface of the insulating layer. A ferroelectric material is conformal to the bottom electrode. A top electrode material is conformal to the ferroelectric material, wherein the bottom electrode material, the ferroelectric material and the top electrode material all extend above and across the top surface of the insulating layer.
Abstract:
An apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The memory array includes an embedded dynamic random access memory (eDRAM) memory array. Another apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The mathematical computation circuit includes a switched capacitor circuit. The switched capacitor circuit includes a back-end-of-line (BEOL) capacitor coupled to a thin film transistor within the metal/dielectric layers of the semiconductor chip. Another apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The mathematical computation circuit includes an accumulation circuit. The accumulation circuit includes a ferroelectric BEOL capacitor to store a value to be accumulated with other values stored by other ferroelectric BEOL capacitors.
Abstract:
Embodiments of the present disclosure describe a semiconductor device having sub regions or distances to define threshold voltages. A first semiconductor device includes a first gate stack having a first edge opposing a second edge and a first source region disposed on the semiconductor substrate. A second semiconductor device includes a second gate stack having a third edge opposing a fourth edge and a second source region disposed on the semiconductor substrate. A first distance extends from the first source region to the first edge of the first gate stack and a second distance different from the first distance extends from the second source region to the third edge of the second gate stack.