Abstract:
Spin orbit torque (SOT) devices with topological insulator (TI) and heavy metal insert are described. In an example, an integrated circuit structure includes a spin orbit coupling (SOC) interconnect including a TI material. A magnetic layer is above the SOC interconnect. An insert layer includes a heavy metal between and in contact with the TI material and the magnetic layer.
Abstract:
A memory device that includes a plurality subarrays of memory cells to store static weights and a plurality of digital full-adder circuits between subarrays of memory cells is provided. The digital full-adder circuit in the memory device eliminates the need to move data from a memory device to a processor to perform machine learning calculations. Rows of full-adder circuits are distributed between sub-arrays of memory cells to increase the effective memory bandwidth and reduce the time to perform matrix-vector multiplications in the memory device by performing bit-serial dot-product primitives in the form of accumulating m 1-bit x n-bit multiplications.
Abstract:
A semiconductor chip is described. The semiconductor chip includes a compute-in-memory (CIM) circuit to implement a neural network in hardware. The semiconductor chip also includes at least one output that presents samples of voltages generated at a node of the CIM circuit in response to a range of neural network input values applied to the CIM circuit to optimize the CIM circuit for the neural network.
Abstract:
Described is an apparatus which comprises: a first electrical path comprising at least one driver and receiver; and a second electrical path comprising at least one driver and receiver, wherein the first and second electrical paths are to receive a same input signal, wherein the first electrical path and the second electrical path are parallel to one another and have substantially the same propagation delays, and wherein the second electrical path is enabled during a first operation mode and disabled during a second operation mode.
Abstract:
Described is an apparatus which comprises: an input ferromagnet to receive a first charge current and to produce a corresponding spin current; and a stack of metal layers configured to convert the corresponding spin current to a second charge current, wherein the stack of metal layers is coupled to the input magnet.
Abstract:
Described is a tunneling field effect transistor (TFET), comprising: a drain region having a first conductivity type; a source region having a second conductivity type opposite of the first conductivity type; a gate region to cause formation of a channel region between the source and drain regions; and a pocket disposed near a junction of the source region, wherein the pocket region formed from a material having lower percentage of one type of atom than percentage of the one type of atom in the source, channel, and drain regions.
Abstract:
Multiplexor circuits with Tunneling field effect transistors (TFET) devices are described. For example, a multiplexor circuit includes a first set of tunneling field effect transistor (TFET) devices that are coupled to each other. The first set of TFET devices receive a first data input signal, a first select signal, and a second select signal. A second set of TFET devices are coupled to each other and receive a second data input signal, the first select signal, and the second select signal. An output terminal is coupled to the first and second set of TFETs. The output terminal generates an output signal of the multiplexor circuit.
Abstract:
Described is an apparatus for a hybrid eDRAM and MRAM memory cell comprising: a capacitor having a first terminal and a second terminal; a first transistor having a gate terminal coupled to a first word line (WL), a source/drain terminal coupled to bit line (BL), and drain/source terminal coupled to the first terminal of the capacitor; a resistive memory element having a first terminal and a second terminal, the first terminal of the resistive memory element device coupled to the first terminal of the capacitor; and a second transistor having a gate terminal coupled to a second WL, a source/drain terminal coupled to source line (SL), and drain/source terminal coupled to the second terminal of the resistive memory element device.
Abstract:
A integrated circuit structure comprises a fin extending from a substrate. The fin comprises source and drain regions and a channel region between the source and drain regions. A multilayer high-k gate dielectric stack comprises at least a first high-k material and a second high-k material, the first high-k material extending conformally over the fin over the channel region, and the second high-k material conformal to the first high-k material, wherein either the first high-k material or the second high-k material has a modified material property different from the other high-k material, wherein the modified material property comprises at least one of ferroelectricity, crystalline phase, texturing, ordering orientation of the crystalline phase or texturing to a specific crystalline direction or plane, strain, surface roughness, and lattice constant and combinations thereof. A gate electrode ix over and on a topmost high-k material in the multilayer high-k gate dielectric stack. A selector element is above the metal layer.
Abstract:
A capacitor is disclosed that includes a first metal layer and a seed layer on the first metal layer. The seed layer includes a polar phase crystalline structure. The capacitor also includes a ferroelectric layer on the seed layer and a second metal layer on the ferroelectric layer.