Abstract:
A method of forming an epitaxial film on a substrate includes growing an initial layer of a film on a substrate at a temperature Tgrowth, said initial layer having a thickness h and annealing the initial layer of the film at a temperature Tanneal, thereby relaxing the initial layer, wherein said thickness h of the initial layer of the film is greater than a critical thickness hc. The method further includes growing additional layers of the epitaxial film on the initial layer subsequent to annealing. In some embodiments, the method further includes growing a layer of the film that includes at least one amorphous island.
Abstract:
A method of forming an epitaxial film on a substrate includes growing an initial layer of a film on a substrate at a temperature Tgrowth, said initial layer having a thickness h and annealing the initial layer of the film at a temperature Tanneal, thereby relaxing the initial layer, wherein said thickness h of the initial layer of the film is greater than a critical thickness hc. The method further includes growing additional layers of the epitaxial film on the initial layer subsequent to annealing. In some embodiments, the method further includes growing a layer of the film that includes at least one amorphous island.
Abstract translation:在衬底上形成外延膜的方法包括在温度T生长时在衬底上生长膜的初始层,所述初始层具有厚度h,并将膜的初始层退火 温度T退火,从而松弛初始层,其中膜的初始层的厚度h大于临界厚度h C c。 该方法还包括在退火之后在初始层上生长外延膜的附加层。 在一些实施例中,该方法还包括生长包括至少一个非晶岛的膜层。
Abstract:
A method of forming an epitaxial film on a substrate includes growing an initial layer of a film on a substrate at a temperature Tgrowth, said initial layer having a thickness h and annealing the initial layer of the film at a temperature Tanneal, thereby relaxing the initial layer, wherein said thickness h of the initial layer of the film is greater than a critical thickness hc. The method further includes growing additional layers of the epitaxial film on the initial layer subsequent to annealing. In some embodiments, the method further includes growing a layer of the film that includes at least one amorphous island.
Abstract translation:在衬底上形成外延膜的方法包括在温度T生长时在衬底上生长膜的初始层,所述初始层具有厚度h,并将膜的初始层退火 温度T退火,从而松弛初始层,其中膜的初始层的厚度h大于临界厚度h C c。 该方法还包括在退火之后在初始层上生长外延膜的附加层。 在一些实施例中,该方法还包括生长包括至少一个非晶岛的膜层。
Abstract:
An optoelectronic device such as an LED or laser which produces spontaneous emission by recombination of carriers (electrons and holes) trapped in Quantum Confinement Regions formed by transverse thickness variations in Quantum Well layers of group III nitrides.
Abstract:
Disclosed is a method for the development of diamond thin films on a non-diamond substrate. The method comprises implanting carbon ions in a lattice-plane matched or lattice matched substrate. The implanted region of the substrate is then annealed to produce a diamond thin film on the non-diamond substrate. Also disclosed are the diamond thin films on non-diamond lattice-plane matched substrates produced by this method. Preferred substrates are lattice and plane matched to diamond such as copper, a preferred implanting method is ion implantation, and a preferred annealing method is pulsed laser annealing.
Abstract:
Epitaxial gallium nitride is grown on a silicon substrate while reducing or suppressing the formation of a buffer layer. The gallium nitride may be grown directly on the silicon substrate, for example using domain epitaxy. Alternatively, less than one complete monolayer of silicon nitride may be formed between the silicon and the gallium nitride. Subsequent to formation of the gallium nitride, an interfacial layer of silicon nitride may be formed between the silicon and the gallium nitride.
Abstract:
A combination nano and microparticle treatment for engines enhances fuel efficiency and life duration and reduces exhaust emissions. The nanoparticles are chosen from a class of hard materials, preferably alumina, silica, ceria, titania, diamond, cubic boron nitride, and molybdenum oxide. The microparticles are chosen from a class of materials of layered structures, preferably graphite, hexagonal boron nitride, magnesium silicates (talc) and molybdenum disulphide. The nano-micro combination can be chosen from the same materials. This group of materials includes zinc oxide, copper oxide, molybdenum oxide, graphite, talc, and hexagonal boron nitride. The ratio of nano to micro in the proposed combination varies with the engine characteristics and driving conditions. A laser synthesis method can be used to disperse nanoparticles in engine oil or other compatible medium. The nano and microparticle combination when used in engine oil can effect surface morphology changes such as smoothening and polishing of engine wear surfaces, improvement in coefficient of friction, and fuel efficiency enhancement up to 35% in a variety of vehicles (cars and trucks) under actual road conditions, and reduction in exhaust emissions up to 90%.
Abstract:
Nanostructures and methods of making nanostructures having self-assembled nanodot arrays wherein nanodots are self-assembled in a matrix material due to the free energies of the nanodot material and/or differences in the Gibb's free energy of the nanodot materials and matrix materials.
Abstract:
Nanostructures and methods of making nanostructures having self-assembled nanodot arrays wherein nanodots are self-assembled in a matrix material due to the free energies of the nanodot material and/or differences in the Gibb's free energy of the nanodot materials and matrix materials.
Abstract:
An improved method of zone-melting recrystallizing of a silicon film on an insulator in which the film is implanted and annealed to achieve a reduction of the density of defects within the film.