Abstract:
An auto brush pressure cleaning system is described. The system includes a first pneumatic brush, a second pneumatic brush disposed to align with the first pneumatic brush adjacent and parallel to the first pneumatic brush, and a computer. The system also includes a first brush pressure regulator electrically coupled to the computer and transmitting a first and a second signal to the computer and a second brush pressure regulator coupled to the second pneumatic brush and the first brush pressure regulator through a first three-way valve and electrically coupled to the computer, wherein the second pneumatic brush transmits a third signal to the second brush pressure regulator and to the first brush pressure regulator and the second brush pressure regulator transmits a fourth signal to the computer. The system further includes a first electro-pressure regulator coupled to the first brush pressure regulator and the first pneumatic brush through a second three-way valve, wherein the first brush pressure regulator receives a fifth signal from the first pneumatic brush and a second electro-pressure regulator coupled to the second pneumatic brush and electrically coupled to the first electro-pressure regulator and the computer, wherein the computer transmits a sixth signal to the second and the first electro-pressure regulators.
Abstract:
A method of removing residual contaminants in grooves of an alignment mark of a semiconductor wafer after a chemical-mechanical polishing is disclosed. The method includes scrubbing the semiconductor wafer using conventional scrubbing technique. Next, the semiconductor wafer is etched back to remove a damaged layer, which is formed during the chemical-mechanical polishing, over the semiconductor wafer. Finally, the semiconductor wafer is cleaned, for example, by NH.sub.4 OH/H.sub.2 O.sub.2 /DI, agitated by a megasonic source, thereby substantially removing the residual contaminants from the alignment mark.
Abstract translation:公开了一种在化学机械抛光之后去除半导体晶片的对准标记的凹槽中残留污染物的方法。 该方法包括使用常规洗涤技术擦洗半导体晶片。 接下来,将半导体晶片回蚀刻以除去在化学机械抛光期间形成的受损层在半导体晶片上。 最后,例如通过NH 4 OH / H 2 O 2 / DI清洗半导体晶片,用兆声波源进行搅拌,从而基本上从对准标记中除去残留的污染物。
Abstract:
A display method, an application program and a computer readable medium for displaying key function are disclosed. The display method for computer key function includes steps user pressing a special keys on the keyboard, triggering an internal embedded controller in the computer and further detecting hardware function set up in the computer via a basic input output system. Thus, function descriptions are displayed on a screen according to hardware function set up in the computer, wherein the hardware function and function descriptions correspond to each function key on the keyboard. Accordingly, it is not required to replace keyboard with different printed function reminding pattern when hardware functions of the computer is changed.
Abstract:
A chemical-mechanical polishing process includes the steps of providing a semiconductor substrate having a first conductive line thereon, and then forming at least one dielectric layer over the substrate and the first conductive line. Next, a chemical-mechanical polishing method is used to polish the surface of the dielectric layer. Thereafter, a cap layer is formed over the polished dielectric layer. The method of forming the cap layer includes depositing silicon oxide using a chemical vapor deposition method with silicane (SiH4) or tetra-ethyl-ortho-silicate (TEOS) as the main reactive agent. Alternatively, the cap layer can be formed by depositing silicon nitride using a chemical vapor deposition method with silicane or silicon dichlorohydride (SiH2Cl2) as the main reactive agent. Finally, a via opening is formed through the dielectric layer and the cap layer, and a second conductive line that couples electrically with the first conductive line through the via opening.
Abstract:
A chemical mechanical polishing machine and a fabrication process using the same. The chemical mechanical polishing machine comprises a retainer ring having a plurality of slurry passages at the bottom of the retainer ring. The retainer ring further comprises a circular path. By conducting the slurry through the slurry passages and the circular, a wafer is planarized within the chemical mechanical polishing machine.
Abstract:
A method for forming narrow line width silicide having reduced sheet resistance is disclosed by the present invention. The method includes: firstly, providing a semiconductor substrate, whereon there formed at least a source/drain region and a gate region, as well as a spacer formed on a sidewall of the gate region; then, depositing a titanium metal layer overlying the semiconductor substrate and the resulting structure; next, carrying out rapid thermal processing and RCA cleaning to form a first titanium silicide layer; consequentially, forming a selective polysilicon layer over the first titanium silicide layer; and, depositing a second titanium metal layer over the selective polysilicon layer and overlying the exposed surface of spacer; finally, carrying out rapid thermal processing and RCA cleaning once again to form a second titanium silicide layer. The overall thickness of titanium silicide is depending on the requiring resistance of titanium silicide under a certain line width.
Abstract:
A chemical-mechanical polishing process for forming a metallic interconnect includes the steps of providing a semiconductor substrate having a first metallic line thereon, and then forming a dielectric layer over the substrate and the first metallic line. Next, a chemical-mechanical polishing method is used to polish the surface of the dielectric layer. Thereafter, a thin cap layer is formed over the polished dielectric layer. The thin cap layer having a thickness of between 1000-3000 .ANG. can be, for example, a silicon dioxide layer, a phosphosilicate glass layer or a silicon-rich oxide layer. The method of forming the cap layer includes depositing silicon oxide using a chemical vapor deposition method with silicane (SiH.sub.4) or tetra-ethyl-ortho-silicate (TEOS) as the main reactive agent. Alternatively, the cap layer can be formed by depositing silicon nitride using a chemical vapor deposition method with silicane or silicon dichlorohydride (SiH.sub.2 Cl.sub.2) as the main reactive agent. Finally, a via opening is formed through the dielectric layer and the cap layer, and a second metallic line that couples electrically with the first metallic line through the via opening is formed.
Abstract:
A chemical-mechanical polishing machine having an improved wafer retainer ring design for the polishing head, comprising a polishing table, a polishing pad, a polishing head and a wafer retainer ring, wherein the polishing pad is above the polishing table, the polishing head is above the polishing pad, and the wafer retainer ring is mounted onto the polishing head. Improvement of the retainer ring design includes the formation of a plurality of guiding holes around the periphery of the retainer ring such that the guiding hole axis follows the centrifugal line produced by a rotating polishing head. Furthermore, the guiding hole has a gradual diffusing structure from the outer inlet to the inner outlet.
Abstract:
A method of preventing overpolishing in a chemical-mechanical polishing operation includes using a spin-on polymer material instead of spin-on glass as the local planarization material. The spin-on polymer layer is further used as a polishing stop layer so as to prevent damage to components due to overpolishing, because the polishing rate of the spin-on polymer layer in a chemical-mechanical polishing operation is, in general, lower than the polishing rate of the silicon dioxide layer formed using plasma enhanced chemical vapor deposition.
Abstract:
A method of fabricating a trench isolation structure in a semiconductor devices. First, a mask layer is formed on a substrate and patterned. Then, a trench is formed in the substrate using the mask layer as a mask. An insulating layer is formed under the mask layer to fill the trench. The insulating layer is polished to expose a portion of the mask layer and an insulating plug is left in the trench. A RTP is performed to avoid mobile ions diffuse into the substrate. There are several operating conditions for the RTP. For example the operating temperature is ranged from about 600.degree. C. to about 1300.degree. C. The duration for performing the RTP is ranged from about 5 seconds to about 5 minutes. The operating gas can be selected from one of a group of N.sub.2, O.sub.2, or N.sub.2 O. Besides, before the RTP a cleaning step is performed using SC-1 or hydrogen fluoride (HF) solution as cleaning solution.