Abstract:
Each of a plurality of light emitting elements has a hexagonal shape with a center. An interior angle at each of corners is less than 180°. The plurality of light emitting elements include a first light emitting element having a first lateral side surface and a second light emitting element having a second lateral side surface. An orientation of the hexagonal shape of the second light emitting element is rotated by 30 degrees plus 30°+60°×N (N is an integer) with respect to the center of the second light emitting element relative to an orientation of the hexagonal shape of the first light emitting element such that the second lateral side surface is not parallel to the first lateral side surface.
Abstract:
A light emitting device includes: a package forming a recess, having a first lead and a second lead arranged on a bottom surface of the recess and a resin section on a lateral wall of the recess to fix the leads, and being in a substantially rectangular shape surrounded by upper sides of the lateral walls of the recess; a light emitting element arranged on the first lead and being in a parallelogram shape; a second wire electrically connecting the light emitting element to the second lead; and reflective members covering inner surfaces of the lateral walls on a diagonal line at corners in the recess, wherein one side of the light emitting element adjacent to the second lead is substantially in parallel to one side of the first lead or the second lead.
Abstract:
A light source device having; a blue light emitting element that emits blue light having an emission peak in a wavelength region of 440 nm to 460 nm; a green phosphor that absorbs part of the blue light emitted by the blue light emitting element and thereby emits green light having an emission peak in a wavelength region of 500 nm to 575 nm; a red phosphor that absorbs at least one of part of the blue light emitted by the blue light emitting element and part of the green light emitted by the green phosphor, and thereby emits red light having an emission peak in a wavelength region of 600 nm to 690 nm; and an absorbent containing neodymium fluoride that absorbs part of the green light and part of the red light.
Abstract:
A surface mount lateral light emitting apparatus, which includes a light emitting device; a first lead frame connected to the light emitting device; a second lead frame connected to the light emitting device; a first resin molding body in which a concave portion for mounting the light emitting device is formed and the first lead frame and the second lead frame are fixed; and a second resin molding body which covers the light emitting device to form a light emitting surface in the concave portion of the first resin molding body, wherein the first resin molding body contains a filler or a light diffusion agent; wherein in a periphery of the concave portion, a width of at least one side of the first resin molding body is not more than 0.2 mm; and wherein the first resin molding body and the second resin molding body are formed with a thermosetting resin.
Abstract:
A method of manufacturing a light emitting device having a resin package which provides an optical reflectivity equal to or more than 70% at a wavelength between 350 nm and 800 nm after thermal curing, and in which a resin part and a lead are formed in a substantially same plane in an outer side surface, includes a step of sandwiching a lead frame provided with a notch part, by means or an upper mold and a lower mold, a step of transfer-molding a thermosetting resin containing a light reflecting material in a mold sandwiched by the upper mold and the lower mold to form a resin-molded body in the lead frame and a step of cutting the resin-molded body and the lead frame along the notch part.
Abstract:
A light emitting device includes a first light emitting element, a second light emitting element, a third light emitting element, a fluorescent material, a film, a first lens, a second lens, and a third lens. The first light emitting element is to emit a first light having a peak wavelength in a range from 440 nm to 485 nm. The second light emitting element is to emit a second light having a peak wavelength in a range from 495 nm to 573 nm. The third light emitting element is configured to emit from a third front surface a third light having a peak wavelength in a range from 440 nm to 485 nm. The fluorescent material is provided on the third front surface and has a fluorescent side surface extending along a front-rear direction. The film is provided to surround the side surface and the fluorescent side surface.
Abstract:
Each of a plurality of light emitting elements has a polygonal shape with five or more corners. An interior angle at each of the corners is less than 180°. The plurality of light emitting elements include a first light emitting element having a first bottom surface, a first top surface opposite to the first bottom surface, and a first lateral side surface between the first bottom surface and the first top surface. The second light emitting element has a second bottom surface, a second top surface opposite to the second bottom surface, and a second lateral side surface between the second bottom surface and the second top surface. The second lateral side surface is provided not to oppose to the first lateral side surface in substantially parallel.
Abstract:
A light emitting device includes a light emitting element configured to emit visible light; a fluorescent substance excited by light from the light emitting element and configured to emit visible light; a translucent member containing a translucent base material, which provided on the fluorescent substance or configured to contain the fluorescent substance, and provided on the light emitting element; and a film provided on an upper surface of the translucent member, and configured as an agglutination of nanoparticles having a different refractive index from the base material.
Abstract:
A light emitting device has: a first lead which is mounted a light emitting element, a second lead separated by an interval from the first lead, an insulating member configured to fix the first lead and the second lead, a wavelength conversion portion configured to cover the light emitting element, and a lens portion configured to cover the wavelength conversion portion, a thickness of the insulating member is equal to the thickness of the first lead and the second lead, a groove or a recessed portion is provided to retain the wavelength conversion portion in a specific region is formed in the first lead, and a lower surface of the first lead that forms an opposite side of a region formed on the wavelength conversion portion is not covered by the insulating member and is exposed to the outside.
Abstract:
A method of manufacturing a light emitting device having a resin package which provides an optical reflectivity equal to or more than 70% at a wavelength between 350 nm and 800 nm after thermal curing, and in which a resin part and a lead are formed in a substantially same plane in an outer side surface, includes a step of sandwiching a lead frame provided with a notch part, by means or an upper mold and a lower mold, a step of transfer-molding a thermosetting resin containing a light reflecting material in a mold sandwiched by the upper mold and the lower mold to form a resin-molded body in the lead frame and a step of cutting the resin-molded body and the lead frame along the notch part.