Methods of forming nanodots using spacer patterning techniques and structures formed thereby
    15.
    发明授权
    Methods of forming nanodots using spacer patterning techniques and structures formed thereby 失效
    使用间隔图案化技术和由此形成的结构形成纳米点的方法

    公开(公告)号:US08388854B2

    公开(公告)日:2013-03-05

    申请号:US11968091

    申请日:2007-12-31

    IPC分类号: C23F1/00

    摘要: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a first block on a nanodot material, forming a first spacer on the first block, removing the first block to form a free standing spacer, removing exposed portions of the nanodot material and then the free standing spacer to form nanowires, forming a second block at an angle to a length of the nanowires, forming a second spacer on the second block, forming a second free standing spacer on the nanowires by removing the second block, and removing exposed portions of the nanowires and then the second free standing spacer to form an ordered array of nanodots.

    摘要翻译: 描述形成微电子器件的方法和相关结构。 这些方法可以包括在纳点物质上形成第一块,在第一块上形成第一间隔物,去除第一块以形成自由间隔物,去除纳米点材料的暴露部分,然后除去自由基间隔物以形成纳米线, 在与所述纳米线的长度成一定角度地形成第二块,在所述第二块上形成第二间隔物,通过去除所述第二块在所述纳米线上形成第二自由间隔物,以及去除所述纳米线的暴露部分,然后除去所述第二自由基 形成有序阵列的纳米点。

    Method to introduce uniaxial strain in multigate nanoscale transistors by self aligned SI to SIGE conversion processes and structures formed thereby
    17.
    发明授权
    Method to introduce uniaxial strain in multigate nanoscale transistors by self aligned SI to SIGE conversion processes and structures formed thereby 有权
    通过自对准SI将SIGNA转换过程和结构形成的多晶纳米级晶体管中的单轴应变的方法

    公开(公告)号:US08288233B2

    公开(公告)日:2012-10-16

    申请号:US11864726

    申请日:2007-09-28

    IPC分类号: H01L21/8244

    摘要: Methods of forming a microelectronic structure are described. Embodiments of those methods may include providing a gate electrode comprising a top surface and first and second laterally opposite sidewalls, wherein a hard mask is disposed on the top surface, a source drain region disposed on opposite sides of the gate electrode, and a spacer disposed on the first and second laterally opposed sidewalls of the gate electrode, forming a silicon germanium layer on exposed portions of the top surface and the first and second laterally opposite sidewalls of the source drain region and then oxidizing a portion of the silicon germanium layer, wherein a germanium portion of the silicon germanium layer is forced down into the source drain region to convert a silicon portion of the source drain region into a silicon germanium portion of the source drain region.

    摘要翻译: 描述形成微电子结构的方法。 这些方法的实施例可以包括提供包括顶表面和第一和第二横向相对的侧壁的栅电极,其中硬掩模设置在顶表面上,源极漏极区域设置在栅电极的相对侧上, 在栅电极的第一和第二横向相对的侧壁上,在源漏区的顶表面和第一和第二横向相对的侧壁的暴露部分上形成硅锗层,然后氧化硅锗层的一部分,其中 硅锗层的锗部分被迫下降到源极漏极区域中,以将源极区域的硅部分转换成源极漏极区域的硅锗部分。

    Method of forming self-aligned low resistance contact layer
    18.
    发明授权
    Method of forming self-aligned low resistance contact layer 有权
    形成自对准低电阻接触层的方法

    公开(公告)号:US08088665B2

    公开(公告)日:2012-01-03

    申请号:US12228386

    申请日:2008-08-11

    IPC分类号: H01L21/336

    摘要: Embodiments of the present invention describe a method of fabricating low resistance contact layers on a semiconductor device. The semiconductor device comprises a substrate having source and drain regions. The substrate is alternatingly exposed to a first precursor and a second precursor to selectively deposit an amorphous semiconductor layer onto each of the source and drain regions. A metal layer is then deposited over the amorphous semiconductor layer on each of the source and drain regions. An annealing process is then performed on the substrate to allow the metal layer to react with amorphous semiconductor layer to form a low resistance contact layer on each of the source and drain regions. The low resistance contact layer on each of the source and drain regions can be formed as either a silicide layer or germanide layer depending on the type of precursors used.

    摘要翻译: 本发明的实施例描述了在半导体器件上制造低电阻接触层的方法。 半导体器件包括具有源区和漏区的衬底。 将基板交替地暴露于第一前体和第二前体,以将非晶半导体层选择性地沉积到源极和漏极区域中的每一个上。 然后在每个源极和漏极区域上的非晶半导体层上沉积金属层。 然后在衬底上进行退火处理,以允许金属层与非晶半导体层反应,以在源极和漏极区域中的每一个上形成低电阻接触层。 根据所使用的前体的类型,源极和漏极区域中的每一个上的低电阻接触层可以形成为硅化物层或锗化物层。