Abstract:
A new packaging method for a wide range of MEMS for application on both the wafer and device scale. Titanium is used as the packaging material and both silicon and titanium MEMS devices are integrated on to a titanium substrate. A Nd:YAG pulsed laser is used to micro-weld the titanium cap to the substrate. A three-dimensional time dependent model of heat flow during laser beam welding is presented. The heat transfer and parametric design capabilities of COMSOL were employed for this purpose. Model calculations are compared and calibrated with experimental results of pulsed laser welds. The functionality and hermiticity of the proposed packaging was evaluated by packaging a self actuated Veeco Instrument AFM cantilever tip. The experimental measurements show that the resonance frequency and quality factor of the device stay the same before and after packaging and the applied technique has no effect on the device.
Abstract:
A new packaging method for a wide range of MEMS for application on both the wafer and device scale. Titanium is used as the packaging material and both silicon and titanium MEMS devices are integrated on to a titanium substrate. A Nd:YAG pulsed laser is used to micro-weld the titanium cap to the substrate. A three-dimensional time dependent model of heat flow during laser beam welding is presented. The heat transfer and parametric design capabilities of COMSOL were employed for this purpose. Model calculations are compared and calibrated with experimental results of pulsed laser welds. The functionality and hermiticity of the proposed packaging was evaluated by packaging a self actuated Veeco Instrument AFM cantilever tip. The experimental measurements show that the resonance frequency and quality factor of the device stay the same before and after packaging and the applied technique has no effect on the device.
Abstract:
Titanium-based thermal ground planes are described. A thermal ground plane in accordance with the present invention comprises a titanium substrate comprising a plurality of pillars, wherein the plurality of Ti pillars can be optionally oxidized to form nanostructured titania coated pillars, and a vapor cavity, in communication with the plurality of titanium pillars, for transporting thermal energy from one region of the thermal ground plane to another region of the thermal ground plane.
Abstract:
A MEMS-tunable semiconductor optical amplifier (SOA). A device in accordance with the present invention comprises a substrate, a first mirror, coupled to the substrate, a second mirror, an active region, coupled between the first and second mirror, and a microelectromechanical actuator, coupled to the second mirror, wherein a voltage is applied to the microelectromechanical actuator to tune the SOA.
Abstract:
A process cycles between etching and passivating chemistries to create rough sidewalls that are converted into small structures. In one embodiment, a mask is used to define lines in a single crystal silicon wafer. The process creates ripples on sidewalls of the lines corresponding to the cycles. The lines are oxidized in one embodiment to form a silicon wire corresponding to each ripple. The oxide is removed in a further embodiment to form structures ranging from micro sharp tips to photonic arrays of wires. Fluidic channels are formed by oxidizing adjacent rippled sidewalls. The same mask is also used to form other structures for MEMS devices.
Abstract:
Multi-level structures are formed in a semiconductor substrate by first forming a pattern of lines or structures of different widths. Width information on the pattern is decoded by processing steps into level information to form a MEMS structure. The pattern is etched to form structures having a first floor. The structures are oxidized until structures of thinner width are substantially fully oxidized. A portion of the oxide is then etched to expose the first floor. The first floor is then etched to form a second floor. The oxide is then optionally removed, leaving a multi-level structure. In one embodiment, high aspect ratio comb actuators are formed using the multi-level structure process.
Abstract:
Improved fabrication processes for microelectromechanical structures, and unique structures fabricated by the improved processes are disclosed. In its simplest form, the fabrication process is a modification of the know SCREAM process, extended and used in such a way as to produce a combined vertical etch and release RIE process, which may be referred to as a “combination etch”. Fabrication of a single-level micromechanical structure using the process of the present invention includes a novel dry etching process to shape and release suspended single crystal silicon elements, the process combining vertical silicon reactive ion etching (Si-RIE) and release etches to eliminate the need to deposit and pattern silicon dioxide mask layers on the sides of suspended structures and to reduce the mechanical stresses in suspended structures caused by deposited silicon dioxide films.
Abstract:
A micromechanical micromotion amplifier has an integrated structure formed primarily of silicon and comprises a plurality of long slender flexible beams which are released from a silicon substrate for movement with respect to fixed points of reference upon the substrate. By arranging these beams in cooperating perpendicular pairs as micromotion amplifier stages, an input axial force/movement applied to a moveable free end of a first beam generates a transverse motion or buckling movement which in turn, translates or induces buckling movement in the connected second beam. The resultant output buckling of the second beam is an order of magnitude greater than the initial movement applied as an input to the first beam. Thus, beam pairs can be arranged as micromotion amplifier stages to amplify minute amounts of movement. Beam pairs or stages can also be cascaded to form integrated devices capable of producing greatly increased measurable effects in response to minute amounts of input. Such devices are useful as highly sensitive integrated micro-sensors for measuring a wide variety of parameters such as temperature, pressure, humidity, impact or acceleration. Such devices may also form the basis of highly sensitive micro-switches.
Abstract:
An isolation process which enhances the performance of silicon micromechanical devices incorporates dielectric isolation segments within the silicon microstructure, which is otherwise composed of an interconnected grid of cantilevered beams. A metal layer on top of the beams provides interconnects and also allows contact to the silicon beams, electrically activating the device for motion or transduction. Multiple conduction paths are incorporated through a metal patterning step prior to structure definition. The invention improves manufacturability of previous processes by performing all lithographic patterning steps on flat topographies, and removing complicated metal sputtering steps required of most high aspect ratio processes. With little modification, the invention can be implemented with integrated circuit fabrication sequences for fully integrated devices.
Abstract:
A micromechanical capacitive accelerometer is provided from a single silicon wafer. The basic structure of the micromechanical accelerometer is etched in the wafer to form a released portion in the substrate, and the released and remaining portions of the substrate are coated with metal under conditions sufficient to form a micromechanical capacitive accelerometer. The substrate is preferably etched using reactive-ion etching for at least the first etch step in the process that forms the basic structure, although in another preferred embodiment, all etching is reactive-ion etching. The accelerometer also may comprise a signal-conditioned accelerometer wherein signal-conditioning circuitry is provided on the same wafer from which the accelerometer is formed, and VLSI electronics may be integrated on the same wafer from which the accelerometer is formed. The micromechanical capacitive accelerometer can be used for airbag deployment, active suspension control, active steering control, anti-lock braking, and other control systems requiring accelerometers having high sensitivity, extreme accuracy and resistance to out of plane forces.