Abstract:
Embodiments of the invention generally relate to epitaxial lift off (ELO) thin films and devices and methods used to form such films and devices. In one embodiment, a method for forming an ELO thin film is provided which includes depositing an epitaxial material over a sacrificial layer on a substrate, adhering a universally shrinkable support handle onto the epitaxial material, wherein the universally shrinkable support handle contains a shrinkable material, and shrinking the support handle to form tension in the support handle and compression in the epitaxial material during a shrinking process. The method further includes removing the sacrificial layer during an etching process, peeling the epitaxial material from the substrate while forming an etch crevice therebetween, and bending the support handle to have substantial curvature.
Abstract:
Embodiments of the invention generally relate to apparatuses for chemical vapor deposition (CVD) processes. In one embodiment, a reactor lid assembly for vapor deposition is provided which includes a first showerhead assembly and an isolator assembly disposed next to each other on a lid support, and a second showerhead assembly and an exhaust assembly disposed next to each other on the lid support, wherein the isolator assembly is disposed between the first and second showerhead assemblies and the second showerhead assembly is disposed between the isolator assembly and the exhaust assembly.
Abstract:
Embodiments of the invention generally relate to apparatuses for chemical vapor deposition (CVD) processes. In one embodiment, a CVD reactor is provided which includes a reactor lid assembly disposed on a reactor body and containing a first showerhead assembly, an isolator assembly, a second showerhead assembly, and an exhaust assembly consecutively and linearly disposed next to each other on a lid support. The CVD reactor further contains first and second faceplates disposed on opposite ends of the reactor body, wherein the first showerhead assembly is disposed between the first faceplate and the isolator assembly and the exhaust assembly is disposed between the second showerhead assembly and the second faceplate. The reactor body has a wafer carrier disposed on a wafer carrier track and a lamp assembly disposed below the wafer carrier track and containing a plurality of lamps which may be utilized to heat wafers disposed on the wafer carrier.
Abstract:
Methods and apparatus are provided for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells. A photovoltaic (PV) unit, according to embodiments of the invention, may have a very thin absorber layer produced by epitaxial lift-off (ELO), all electrical contacts positioned on the back side of the PV device to avoid shadowing, and/or front side and back side light trapping employing a diffuser and a reflector to increase absorption of the photons impinging on the front side of the PV unit. Several PV units may be combined into PV banks, and an array of PV banks may be connected to form a PV module with thin strips of metal or conductive polymer applied at low temperature. Such innovations may allow for greater efficiency and flexibility in PV devices when compared to conventional solar cells.
Abstract:
Methods and apparatus are provided for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells. A photovoltaic (PV) unit may have all electrical contacts positioned on the back side of the PV device to avoid shadowing and increase absorption of the photons impinging on the front side of the PV unit. Several PV units may be combined into PV banks, and an array of PV banks may be connected to form a PV module with thin strips of metal or conductive polymer formed at low temperature. Such innovations may allow for greater efficiency and flexibility in PV devices when compared to conventional solar cells.
Abstract:
Embodiments of the invention generally relate to epitaxial lift off (ELO) thin films and devices and methods used to form such films and devices. In one embodiment, a method for forming an ELO thin film is provided which includes depositing an epitaxial material over a sacrificial layer on a substrate, adhering a flattened, pre-curved support handle onto the epitaxial material, and removing the sacrificial layer during an etching process. The etching process includes bending the pre-curved support handle to have substantial curvature while peeling the epitaxial material from the substrate and forming an etch crevice therebetween. Compression is maintained within the epitaxial material during the etching process. The flattened, pre-curved support handle may be formed by flattening a pre-curved support material.
Abstract:
Embodiments of the invention generally relate to apparatuses for chemical vapor deposition (CVD) processes. In one embodiment, a wafer carrier track for levitating and traversing a wafer carrier within a vapor deposition reactor system is provided which includes upper and lower sections of a track assembly having a gas cavity formed therebetween. A guide path extends along an upper surface of the upper section and between two side surfaces which extend along and above the guide path and parallel to each other. A plurality of gas holes along the guide path extends from the upper surface of the upper section, through the upper section, and into the gas cavity. In some examples, the upper and lower sections of the track assembly may independently contain quartz, and in some examples, may be fused together.
Abstract:
Methods and apparatus are provided for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells. In one embodiment of a photovoltaic (PV) device, the PV device generally includes an n-doped layer and a p+-doped layer adjacent to the n-doped layer to form a p-n layer such that electric energy is created when electromagnetic radiation is absorbed by the p-n layer. The n-doped layer and the p+-doped layer may compose an absorber layer having a thickness less than 500 nm. Such a thin absorber layer may allow for greater efficiency and flexibility in PV devices when compared to conventional solar cells.
Abstract:
Methods and apparatus are provided for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells. A photovoltaic (PV) device may incorporate front side and/or back side light trapping techniques in an effort to absorb as many of the photons incident on the front side of the PV device as possible in the absorber layer. The light trapping techniques may include a front side antireflective coating, multiple window layers, roughening or texturing on the front and/or the back sides, a back side diffuser for scattering the light, and/or a back side reflector for redirecting the light into the interior of the PV device. With such light trapping techniques, more light may be absorbed by the absorber layer for a given amount of incident light, thereby increasing the efficiency of the PV device.
Abstract:
Methods and apparatus are provided for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells. A photovoltaic (PV) unit, according to embodiments of the invention, may have a very thin absorber layer produced by epitaxial lift-off (ELO), all electrical contacts positioned on the back side of the PV device to avoid shadowing, and/or front side and back side light trapping employing a diffuser and a reflector to increase absorption of the photons impinging on the front side of the PV unit. Several PV units may be combined into PV banks, and an array of PV banks may be connected to form a PV module with thin strips of metal or conductive polymer applied at low temperature. Such innovations may allow for greater efficiency and flexibility in PV devices when compared to conventional solar cells.