摘要:
A semiconductor structure includes a III-nitride substrate characterized by a first conductivity type and having a first side and a second side opposing the first side, a III-nitride epitaxial layer of the first conductivity type coupled to the first side of the III-nitride substrate, and a plurality of III-nitride epitaxial structures of a second conductivity type coupled to the III-nitride epitaxial layer. The semiconductor structure further includes a III-nitride epitaxial formation of the first conductivity type coupled to the plurality of III-nitride epitaxial structures, and a metallic structure forming a Schottky contact with the III-nitride epitaxial formation and coupled to at least one of the plurality of III-nitride epitaxial structures.
摘要:
An edge terminated semiconductor device is described including a GaN substrate; a doped GaN epitaxial layer grown on the GaN substrate including an ion-implanted insulation region, wherein the ion-implanted region has a resistivity that is at least 90% of maximum resistivity and a conductive layer, such as a Schottky metal layer, disposed over the GaN epitaxial layer, wherein the conductive layer overlaps a portion of the ion-implanted region. A Schottky diode is prepared using the Schottky contact structure.
摘要:
Methods and apparatus are provided for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells. A photovoltaic (PV) unit, according to embodiments of the invention, may have a very thin absorber layer produced by epitaxial lift-off (ELO), all electrical contacts positioned on the back side of the PV device to avoid shadowing, and/or front side and back side light trapping employing a diffuser and a reflector to increase absorption of the photons impinging on the front side of the PV unit. Several PV units may be combined into PV banks, and an array of PV banks may be connected to form a PV module with thin strips of metal or conductive polymer applied at low temperature. Such innovations may allow for greater efficiency and flexibility in PV devices when compared to conventional solar cells.
摘要:
A semiconductor structure includes a GaN substrate with a first surface and a second surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. A first electrode is electrically coupled to the second surface of the GaN substrate. The semiconductor structure further includes a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the GaN substrate and a second GaN layer of a second conductivity type coupled to the first GaN epitaxial layer. The first GaN epitaxial layer comprises a channel region. The second GaN epitaxial layer comprises a gate region and an edge termination structure. A second electrode coupled to the gate region and a third electrode coupled to the channel region are both disposed within the edge termination structure.
摘要:
Methods and apparatus are provided for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells. A photovoltaic (PV) device may incorporate front side and/or back side light trapping techniques in an effort to absorb as many of the photons incident on the front side of the PV device as possible in the absorber layer. The light trapping techniques may include a front side antireflective coating, multiple window layers, roughening or texturing on the front and/or the back sides, a back side diffuser for scattering the light, and/or a back side reflector for redirecting the light into the interior of the PV device. With such light trapping techniques, more light may be absorbed by the absorber layer for a given amount of incident light, thereby increasing the efficiency of the PV device.
摘要:
A method of growing an n-type III-nitride-based epitaxial layer includes providing a substrate in an epitaxial growth reactor, forming a masking material coupled to a portion of a surface of the substrate, and flowing a first gas into the epitaxial growth reactor. The first gas includes a group III element and carbon. The method further comprises flowing a second gas into the epitaxial growth reactor. The second gas includes a group V element, and a molar ratio of the group V element to the group III element is at least 5,000. The method also includes growing the n-type III-nitride-based epitaxial layer.
摘要:
An integrated device including a vertical III-nitride FET and a Schottky diode includes a drain comprising a first III-nitride material, a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, and a channel region comprising a third III-nitride material coupled to the drift region. The integrated device also includes a gate region at least partially surrounding the channel region, a source coupled to the channel region, and a Schottky contact coupled to the drift region. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride FET and the Schottky diode is along the vertical direction.
摘要:
A method of fabricating a diode in gallium nitride (GaN) materials includes providing a n-type GaN substrate having a first surface and a second surface and forming a n-type GaN drift layer coupled to the first surface of the n-type GaN substrate. The method also includes forming an in-situ SixNy layer coupled to the n-type GaN drift layer opposite the n-type GaN substrate and at least partially removing portions of the SixNy layer and the n-type GaN drift layer to form a plurality of void regions and a remaining portion of the SixNy layer. The method further includes selectively regrowing a p-type epitaxial layer in the void regions.
摘要:
A method of growing a III-nitride-based epitaxial structure includes providing a substrate in an epitaxial growth reactor and heating the substrate to a predetermined temperature. The method also includes flowing a gallium-containing gas into the epitaxial growth reactor and flowing a nitrogen-containing gas into the epitaxial growth reactor. The method further includes flowing a gettering gas into the epitaxial growth reactor. The predetermined temperature is greater than 1000° C.
摘要:
A method of reusing a III-nitride growth substrate according to embodiments of the invention includes epitaxially growing a III-nitride semiconductor structure on a III-nitride substrate. The III-nitride semiconductor structure includes a sacrificial layer and an additional layer grown over the sacrificial layer. The sacrificial layer is implanted with at least one implant species. The III-nitride substrate is separated from the additional layer at the implanted sacrificial layer. In some embodiments the III-nitride substrate is GaN and the sacrificial layer is GaN, an aluminum-containing III-nitride layer, or an indium-containing III-nitride layer. In some embodiments, the III-nitride substrate is separated from the additional layer by etching the implanted sacrificial layer.