摘要:
An embodiment circuit includes a first charge pump configured to generate a first current at a first node, and a second charge pump configured to generate a second current at a second node. The circuit further includes an isolation buffer coupled between the first node and the second node and an adder having a first input coupled to the second node. The circuit additionally includes an auxiliary charge pump configured to generate a third current at a second input of the adder, and an oscillator having an input coupled to an output of the adder.
摘要:
A current mirror circuit provides a current to drive a load. A noise cancelling circuit is provided to keep the load current constant in spite of variations in the supply voltage. The noise cancelling circuit includes an auxiliary current path which branches from the load current path. The length-to-width ratios of transistors of the circuit are selected to provide the desired noise cancellation while maintaining device stability.
摘要:
According to an embodiment, a circuit includes a first charge pump configured to generate a first current at a first node, a second charge pump configured to generate a second current at a second node, a loop filter coupled between the first and second nodes, the loop filter including a first filter path coupled to the first node, a second filter path coupled to the second node, and an isolation buffer interposed between the first and second filter paths. The second current at the second node is different than the first current at the first node. The circuit further includes an oscillator configured to apply a first gain to an output of the first filter path and a second gain to an output of the second filter path.
摘要:
A circuit includes a frequency detector generating a comparison signal as a function of a comparison between a reference signal and a feedback signal. An oscillator generates an output signal as a function of the comparison signal. A frequency divider, in operation, divides the output signal by a division value to produce the feedback signal as having a frequency that is a multiple of a frequency of the reference signal. A frequency counter circuit measures the frequency of the reference signal and generates a count signal based thereupon. A control circuit adjusts the division value used by the frequency divider, in operation, based upon the count signal.
摘要:
An electronic device including a low dropout regulator having an output coupled to a first conduction terminal of a transistor, with a second conduction terminal of the transistor being coupled to an output node of the electronic device. A method for operating the device to switch into a power on mode includes: turning on the low dropout regulator, removing a DC bias from the second conduction terminal of the transistor, and turning on the transistor. A method for operating the device to switch into a power down mode includes: turning off the transistor, forming the DC bias at the second conduction terminal of the transistor, and turning off the low dropout regulator.
摘要:
Disclosed is a method of locking a locked loop quickly, including receiving an input signal having an input frequency, and generating an intermediate signal having an intermediate frequency intended to be equal to a geometric mean of the input frequency and a desired frequency, but not equal. Results of division of the desired output frequency by the intermediate frequency are estimated, producing a first divider value. A first locked loop utilizing a controllable oscillator is activated. A divider value of the first locked loop is set to the first divider value, and the intermediate signal is provided to the first locked loop, so that when the first locked loop reaches lock, the controllable oscillator produces the desired frequency. When the first locked loop reaches lock, a second locked loop that utilizes the controllable oscillator is activated, the first locked loop is deactivated, and generation of the intermediate signal is ceased.
摘要:
A source synchronous data transmission system includes a data transmitting device and a data receiving device. A dedicated data line carries a data signal from the data transmission device to the data receiving device. A dedicated clock line carries a modulated clock signal from the data transmission device to the data receiving device. The data transmission device includes a clock data driver configured to encode data into the modulated clock signal by modulating an amplitude of the modulated clock signal. Thus, the clock line of the source synchronous data transmission system carries the clock signal and additional data.
摘要:
A method of dividing a clock signal by an input signal of N bits with M most significant bits is described herein. The method includes dividing the clock signal by the most significant bits of the input signal 2N-M−1 times out of 2N-M divisions of the clock signal, using a divider. The clock signal is divided by a sum of the most significant bits and the least significant bits one time out of 2N-M divisions of the clock signal, using the divider. The clock signal is also divided by 2N-M, 2N-M times, using the divider.
摘要:
A power harvesting circuit includes a new transmitter topology that ensures that no junction of thin oxide transistors forming the power harvesting circuit will experience a voltage across junctions of the transistors that is more than a maximum tolerable junction voltage. A supplemental power feed circuit operates to provide a supplemental feed current to components in a transmitter circuit when power harvested from a receiver circuit is insufficient to adequately power these components of the transmitter circuit, which may occur during high frequency operation of communications channels coupling the transmitter and receiver circuits. The supplemental power feed circuit also operates to sink a shunt current when power harvested from the receiver circuit is more than is needed to power the components in the transmitter circuit.
摘要:
A phase locked loop (PLL) circuit includes a phase comparison circuit configured to compare phase of an input signal to phase of a feedback signal and generate a control signal responsive to the phase comparison and an oscillator circuit configured to generate an output signal at a frequency set by said control signal, where said feedback signal is derived from said output signal. The PLL circuit further operates in a calibration mode of operation wherein the oscillator circuit operates in a frequency locked loop mode to compare frequency of the input signal to frequency of the output signal and center a gain of the oscillator circuit across process, voltage and temperature in response to the frequency comparison. Furthermore, bias current for a charge pump within the phase comparison circuit is calibrated during calibration mode of operation to match a temperature independent reference current.