Abstract:
The invention relates to a polymer-coated packaging material, a method of manufacturing the same, and products, such as a disposable drinking cup, made from the material. The packaging material comprises a fibrous base (1) of paper or board and an extruded polymer layer (2) containing a blend of (i) 0 to 25 wt-% of a branched low-density polyethylene (LDPE)with a lower melt viscosity and (ii) 75 to 90 wt-% of a linear low-density polyethylene (LLDPE) with a higher melt viscosity. The packaging material of the invention comprises multilayer coatings, e.g. an adhesive innermost and a heat-sealable outermost layer (2, 4) of said blend and a vapour barrier middle layer (3) of at most 90 wt-% of high density polyethylene (HDPE). The layers (2, 3, 4) are brought and adhered to the fibrous base (1) by coextrusion. To maximize renewability of the materials HDPE and LLDPE as used for the structure are of biologic origin.
Abstract:
Method for making a film that comprises microfibrillated cellulose, wherein the film has low OTR values and especially suitable for a tropical environment. The method comprising the steps of providing a suspension comprising microfibrillated cellulose (MFC), forming a film from said suspension, wherein the film having a solid content above 40%, preferably above 50%, treating the film with flame or plasma treatment, such that a surface activation takes place on the film, and cooling the film, wherein the surface of the film having a decreased OTR value and a high moisture resistance.
Abstract:
The present invention relates to a web of fibrous cellulosic material derived from wood pulp, said web being suitable for three-dimensional moulding to form a packaging product, wherein the web comprises >40 wt % of soft wood chemical pulp and at least one strength enhancement agent, wherein the web has a grammage less than 400 g/m2, and wherein the cellulose fibers of said soft wood chemical pulp comprise a fiber curl of >9%.
Abstract:
The invention concerns a fibrous-based oxygen barrier film, which comprises (i) a microfibrillated cellulose (MFC) film, (ii) an oxygen barrier polymer layer, (iii) an optional tie layer, and (iv) an outermost polyolefin layer. The invention even concerns a laminate, in which said multilayer film is combined with a fibrous paper or board base by means of an intermediate polyethylene layer. The oxygen barrier polymerlayer, which preferably is EVOH, and the polyolefin layer are brought by coextrusion onto the MFC film. The film and the laminate according to the invention aim at an improved oxygen barrier in high humidity conditions and have use in oxygen-sensitive food packaging.
Abstract:
Method for making a film that comprises microfibrillated cellulose, wherein the film has low OTR values and especially suitable for a tropical environment. The method comprising the steps of providing a suspension comprising microfibrillated cellulose (MFC), forming a film from said suspension, wherein the film having a solid content above 40%, preferably above 50%, treating the film with flame or plasma treatment, such that a surface activation takes place on the film, and cooling the film, wherein the surface of the film having a decreased OTR value and a high moisture resistance.
Abstract:
A biodegradable packaging material, a method of manufacturing the same, as well as products made of the material wherein a multilayer coating coextruded onto a fibrous substrate the multilayer coating comprising innermost and outermost layers of a blend comprising 20-95 wt-% of a higher melt index polylactide and 5-80 wt-% of another biodegradable polymer such as polybutylene succinate, and a middle layer containing a lower melt index polylactide alone. The goal is to increase machine speed in coextrusion while maintaining good adhesiveness to the substrate and good heat-sealability of the coating. The products include disposable drinking cups and board trays, as well as sealed carton packages for solids and liquids.
Abstract:
The invention covers a method of producing a heat-resistant polymer-coated oven board, the resulting oven board, a food tray and a food package, which comprise such board and withstand heating in a range or microwave oven. According to the invention the coated oven board (1) is made by adhering a premade heat-resisting film (4) comprising polyethylene terephthalate (PET) or its derivate, such as glycol-modified PET known as PETG, to a board base (2) by extrusion lamination, in which an adhesive layer (3) comprising polyamide (PA) is extruded between the heat-resisting film and the board base. To improve the strength and barrier properties, the film (4) may be an extruded multilayer film and/or the film may be stretch-orientated to bring about crystallization in PET.
Abstract:
The invention relates to use of polylactide (PLA) as an extruded polymer coating on paper or board intended for the production of containers and packages, which are heated in a stove or microwave oven. According to the invention a polyfunctional cross-linking agent, such as trialkyl isocyanureate (TAIC), is blended with PLA, and the extruded coating layer is subjected to cross-linking electron beam (EB) radiation. PLA may be used as such or blended with another biodegradable polyester such as polybutylene succinate (PBS). EB radiation has been found to improve adhesion of the coating to the paper or board substrate, heat-scalability of the coating, and heat-resistance of the finished containers and packages.
Abstract:
The invention relates to methods for lowering the melt viscosity and thereby improving heat-sealability of a polyester. The invention also relates to a method for manufacturing a heat-sealed container or package from fibrous- based, polyester-coated packaging material, and a method for heat-sealing polyester. The solution according to the invention is subjecting polyester to electron beam (EB) radiation. The lowered melt viscosity allows a lower heat-sealing temperature, and permits sealing of polyester to an uncoated fibrous surface. The preferred polyester for the invention is polylactide, as such or as blended with another polyester.
Abstract:
The present invention relates to a container for liquid containing food products, manufactured by press forming of a polymer coated fiber based substrate, said container comprising a bottom portion, a sidewall portion and a top flange portion, wherein said press forming has resulted in the formation a plurality of creases extending in a direction from the bottom portion to the top flange portion and further across the top flange portion. The container comprises an indentation pattern (130, 140, 150, 160, 170, 180, 190a, 190b, 200) formed at a creased inner surface of said sidewall portion and/or at a creased top surface of said top flange portion, said indentation pattern preventing migration of liquid from a liquid containing food product in the container along said creases. The invention relates also to a method for manufacturing such container.