Abstract:
A nonvolatile memory device comprises a nonvolatile memory chip comprising a static latch, first and second dynamic latches that receive the data stored in the static latch through a floating node, and a memory cell configured to store multi-bit data. The nonvolatile memory device performs a refresh operation on the first dynamic latch where externally supplied first single bit data is stored in the first dynamic latch, performs a refresh operation on the second dynamic latch where externally supplied second single bit data is stored in the second dynamic latch, and programs the memory cell using the data stored in the first and second dynamic latches after the first and second single bit data are stored in the respective first and second dynamic latches.
Abstract:
An operation method of a nonvolatile memory device includes performing a 1-stage program step and a 1-stage verify step on a first word line, storing a first time stamp, performing the 1-stage program step and the 1-stage verify step on a second word line, storing a second time stamp, calculating a delay time based on the first time stamp and the second time stamp, determining whether the delay time is greater than a threshold value, adjusting at least one 2-stage verify voltage associated with the first word line from a first voltage level to a second voltage level based on the delay time, and performing a 2-stage program step and a 2-stage verify step on the first word line. A level of the at least one 1-stage verify voltage is lower than the second voltage level, and the second voltage level is lower than the first voltage level.
Abstract:
A nonvolatile memory device and an operating method are provided. The nonvolatile memory device includes a memory cell array including a plurality of planes, each plane including a plurality of memory blocks, an address decoder connected to the memory cell array, a voltage generator configured to apply an operating voltage to the address decoder, a page buffer circuit including page buffers corresponding to each of the planes, a data input/output circuit connected to the page buffer circuit configured to input and output data and a control unit configured to control the operation of the address decoder, the voltage generator, the page buffer circuit, and the data input/output circuit, wherein the control unit is configured to operate in a multi-operation or a single operation by checking whether a memory block of an access address is a bad block.
Abstract:
A memory cell array includes memory cells that are formed in vertical channels extended in a vertical direction with respect to a substrate. The vertical channels are arranged in a zig-zag manner in parallel to the first direction. A read-write circuit is connected to the memory cells via bit lines. An address decoder decodes an address to provide decoded address signals to the read-write circuit. The memory cells include outer cells and inner cells. A distance between one of the outer cells and a common source node is smaller than a distance between one of the inner cells and the common source node. Data of the memory cells are distributed among ECC sectors and a data input-output order of the memory cells is arranged such that each ECC sector has substantially the same number of the outer cells and the inner cells. Each ECC sector corresponds to an ECC operation unit.
Abstract:
A method of operating a non-volatile memory device includes selecting a first select transistor from among a plurality of select transistors included in a NAND string, and performing a check operation on a first threshold voltage of the first select transistor. The check operation includes comparing the first threshold voltage with a first lower-limit reference voltage level, and performing a program operation on the first select transistor when the first threshold voltage is lower than the first lower-limit reference voltage level. When the first threshold voltage is equal to or higher than the first lower-limit reference voltage level, the check operation on the first threshold voltage is ended.
Abstract:
A non-volatile memory device is provided. The non-volatile memory device includes a cell string including a plurality of non-volatile memory cells; and an operation control block configured to supply a program voltage to a word line connected to a selected non-volatile memory cell among the plurality of non-volatile memory cells during a program operation, configured to supply a first negative voltage to the word line during a detrapping operation, and configured to supply a second negative voltage as a verify voltage to the word line during a program verify operation.
Abstract:
A page buffer comprises a static latch configured to store data received from an external device, and a dynamic latch configured to receive the data stored in the static latch through a floating node, the dynamic latch comprising a storage capacitor, a write transistor configured to write the data of the floating node to the storage capacitor, and a read transistor configured to read the data of the storage capacitor, and the write transistor and the read transistor sharing the floating node.
Abstract:
In some embodiments, a non-volatile memory device includes a control logic circuit configured to generate a program signal and an erase signal based on control signals, a voltage generator configured to generate a program voltage and an erase voltage based on the program signal and the erase signal, a memory cell array including a memory cell, a string select transistor coupled to the memory cell, a bit-line coupled to the string select transistor, and a string select line coupled to the string select transistor, and a page buffer circuit coupled to the bit-line, and including a first precharge transistor that is configured to operate based on the program signal and the erase signal. The first precharge transistor is configured to apply the program voltage and the erase voltage to the bit-line in response to the program signal and the erase signal, respectively.
Abstract:
A memory cell array includes memory cells that are formed in vertical channels extended in a vertical direction with respect to a substrate. The vertical channels are arranged in a zigzag manner in parallel to the first direction. A read-write circuit is connected to the memory cells via bit lines. An address decoder decodes an address to provide decoded address signals to the read-write, circuit. The memory cells include outer cells and inner cells. A distance between one of the outer cells and a common source node is smaller than a distance between one of the inner cells and the common source node. Data of the memory cells are distributed among ECC sectors and a data input-output order of the memory cells is arranged such that each ECC sector has substantially the same number of the outer cells and the inner cells. Each ECC sector corresponds to an ECC operation unit.
Abstract:
A nonvolatile memory device includes a memory cell array, a row decoder, and page buffer, and control logic. The memory cell array includes cell strings connected to select lines. Each select line is connected to two or more cell strings, each cell string includes memory cells connected to a plurality of word lines, and a select transistor is connected to a corresponding one of the select lines. The row decoder sequentially selects the select lines in a read operation. A page buffer obtains a read result of the two or more cell strings when a corresponding select line is selected and accumulates read results of the cell strings when the select lines are sequentially selected. The control logic controls a subsequent operation based on the accumulated read results.