摘要:
Precise classifying of granular or powdered raw material at the desired classifying point by means of a vortex pneumatic classifier comprising: a rotor, a plurality of vortex flow adjusting vanes provided on the said rotor, a classifying chamber defined around the said vortex flow adjusting vanes, and guide vanes radially opposing the said vortex flow adjusting vanes across the said classifying chamber, wherein the mounting pitch P of the said vortex flow adjusting vanes is determined in relation to the classifying particle diameter Dp(th) so as to meet the condition of the following relation expressionP.ltoreq.1.04.times.Dp(th).sup.0.365.
摘要:
A NaCl oxide thin layer oriented to (100) face or a spinel oxide thin layer oriented to (100) face, a perovskite dielectric thin layer oriented to (100) face and a metal electrode are sequentially laminated on a metal electrode, thus providing a thin film capacitor. Or alternatively, a thin film capacitor is manufactured by sequentially laminating a NaCl oxide thin layer oriented to (100) face or a spinel oxide thin layer oriented to (100) face, a platinum thin layer as a lower electrode oriented to (100) face, a perovskite dielectric thin layer oriented to (100) face and a metal thin layer as an upper electrode on a substrate. A plasma-enhanced CVD method is applied to form a NaCl oxide thin layer, a spinel oxide thin layer and a perovskite dielectric thin layer while a vacuum deposition method, a sputtering method, a CVD method or a plasma-enhanced CVD method is applied for the formation of a metal electrode.
摘要:
A method of forming a conductive thick film pattern comprises the steps of filling grooves of an intaglio with a conductive ink, transferring the conductive ink in the grooves onto a blanket of which surface is coated with an elastic material, transferring and printing a conductive thick film pattern transferred on the blanket onto a substrate, firing the conductive pattern to scatter the organic matter, and sintering the conductive pattern. A conductive ink comprises conductive metal powder, glass frit, transition metal oxide, dispersing agent, and vehicle containing an organic binder comprising at least one of poly-iso-butyl methacrylate, poly-iso-propyl methacrylate, polymethyl methacrylate, poly-4-fluoroethylene, and poly-.alpha.-methyl styrene.
摘要:
Herein disclosed is a dry type continuous wire drawing process which can retain satisfactory working circumstances while eliminating the problem of disposal of waste liquids. The wire drawing process includes the steps of descaling a wire to be drawn, coating the descaled wire with a lubricant, and drawing the lubricant-coated wire through a drawing die. The descaling step is conducted in a mechanical manner. At the lubricant coating step, the descaled wire is once coated with lime powder and then with metallic soap powder. Thus. the three steps recited are conducted under dry and continuous conditions. At the lubricant coating step, the lime-coated wire may be coated with powder of sodium stearate before it is coated with the metallic soap.
摘要:
A nonvolatile memory element comprises a first electrode (103); a second electrode (105); and a resistance variable layer (104) disposed between the first electrode (103) and the second electrode (105), resistance values of the resistance variable layer reversibly changing in response to electric signals applied between the electrodes (103, 105); the resistance variable layer (104) including a first tantalum oxide layer (107) comprising a first tantalum oxide and a second tantalum oxide layer (108) comprising a second tantalum oxide which is different in oxygen content from the first tantalum oxide, the first tantalum oxide layer and the second tantalum oxide layer being stacked together, and being configured such that 0
摘要:
A nonvolatile memory element comprises a first electrode layer (103), a second electrode (107), and a resistance variable layer (106) which is disposed between the first electrode layer (103) and the second electrode layer (107), a resistance value of the resistance variable layer varying reversibly according to electric signals having different polarities which are applied between the electrodes (103), (107), wherein the resistance variable layer (106) has a first region comprising a first oxygen-deficient tantalum oxide having a composition represented by TaOx (0
摘要:
A method of manufacturing a non-volatile semiconductor memory element including a variable resistance element and a non-ohmic element. The variable resistance element includes a first electrode, a variable resistance layer, and a shared electrode. The non-ohmic element includes the shared electrode, a semiconductor or insulator layer, and a second electrode. The method includes: forming the first electrode on a substrate; forming the variable resistance layer on the first electrode; forming the shared electrode by nitriding a front surface of the variable resistance layer; forming the semiconductor or insulator layer on the shared electrode; and forming the second electrode. In the forming of the shared electrode, a front surface of a transition metal oxide is nitrided by a plasma nitriding process to form the shared electrode comprising a transition metal nitride.
摘要:
A nonvolatile memory element comprises a first electrode (103); a second electrode (105); and a resistance variable layer (104) disposed between the first electrode (103) and the second electrode (105), resistance values of the resistance variable layer reversibly changing in response to electric signals applied between the electrodes (103, 105); the resistance variable layer (104) including a first tantalum oxide layer (107) comprising a first tantalum oxide and a second tantalum oxide layer (108) comprising a second tantalum oxide which is different in oxygen content from the first tantalum oxide, the first tantalum oxide layer and the second tantalum oxide layer being stacked together, and being configured such that 0
摘要:
A memory element comprises a first electrode, a second electrode, and a resistance variable film 2 which is disposed between the first and second electrodes to be connected to the first and second electrodes, a resistance value of the resistance variable film 2 varying based on voltage applied between the first and second electrodes, the resistance variable film 2 includes a layer 2a made of Fe3O4 and a layer 2b made of Fe2O3 or a spinel structure oxide which is expressed as MFe2O4 (M: metal element except for Fe); and the layer 2a made of Fe3O4 is thicker than the layer 2b made of Fe2O3 or the spinel structure oxide.
摘要翻译:存储元件包括第一电极,第二电极和电阻可变膜2,电阻可变膜2设置在与第一和第二电极连接的第一和第二电极之间,电阻变化膜2的电阻值基于电压变化 电阻可变膜2包括由Fe 3 O 4制成的层2a和由Fe 2 O 3制成的层2b或以MFe 2 O 4表示的尖晶石结构氧化物(M:除了Fe之外的金属元素); 由Fe 3 O 4制成的层2a比由Fe 2 O 3或尖晶石结构氧化物制成的层2b厚。
摘要:
A variable resistance nonvolatile storage device which includes (i) a semiconductor substrate (301), (ii) a variable resistance element (309) having: lower and upper electrodes (309a, 309c); and a variable resistance layer (309b) whose resistance value reversibly varies based on voltage signals each of which has a different polarity and is applied between the electrodes (309a, 309c), and (iii) a MOS transistor (317) formed on the substrate (301), wherein the variable resistance layer (309b) includes: oxygen-deficient transition metal oxide layers (309b-1, 309b-2) having compositions MOx and MOy (where x