摘要:
A semiconductor light emitting device manufacture method is provided which can manufacture a semiconductor light emitting device of high quality. A first substrate of an n-type ZnO substrate is prepared. A lamination structure including an optical emission layer made of ZnO based compound semiconductor is formed on the first substrate. A p-side conductive layer is formed on the lamination structure. A first eutectic material layer made of eutectic material is formed on the p-side conductive layer. A second eutectic material layer made of eutectic material is formed on a second substrate. The first and second eutectic material layers are eutectic-bonded to couple the first and second substrates. After the first substrate is optionally thinned, an n-side electrode is formed on a partial surface of the first substrate.
摘要:
A ZnO-containing semiconductor layer contains Se added to ZnO and has an emission peak wavelength of ultraviolet light and an emission peak wavelength of visual light. By combining the ZnO-containing semiconductor layer with phosphor or a semiconductor which is excited by the emitted ultraviolet light and emits visual light, visual light at various wavelengths can be emitted.
摘要:
A semiconductor light emitting device manufacture method is provided which can manufacture a semiconductor light emitting device of high quality. A first substrate of an n-type ZnO substrate is prepared. A lamination structure including an optical emission layer made of ZnO based compound semiconductor is formed on the first substrate. A p-side conductive layer is formed on the lamination structure. A first eutectic material layer made of eutectic material is formed on the p-side conductive layer. A second eutectic material layer made of eutectic material is formed on a second substrate. The first and second eutectic material layers are eutectic-bonded to couple the first and second substrates. After the first substrate is optionally thinned, an n-side electrode is formed on a partial surface of the first substrate.
摘要:
A ZnO-based semiconductor light emitting element includes a ZnO-based semiconductor layer formed on a rectangular sapphire A-plane substrate having a principal surface lying in the A-plane {11-20}. The substrate has a thickness of 50 to 200 μm and is surrounded by two parallel first side edges forming an angle in a range of 52.7° to 54.7° with respect to the m-axis orthogonal to the c-axis and two parallel second side edges orthogonal to the first side edges. The light emitting element is obtained by: forming, on a surface of the sapphire A-plane substrate opposite to the surface on which the ZnO-based semiconductor layer is formed, first scribed grooves forming an angle in a range of 52.7° to 54.7° with respect to the m-axis and second scribed grooves orthogonal to the first scribed grooves; and breaking the substrate along the first scribed grooves and then along the second scribed grooves.
摘要:
Disclosed is a method of manufacturing a ZnO-based semiconductor device, the method includes a first metal layer formation step of forming a first metal layer on a p-type ZnO-based semiconductor layer in island-form and/or mesh-form; a heat treatment step of performing heat treatment of the first metal layer and the p-type ZnO-based semiconductor layer under an oxygen-free atmosphere to form a mixture layer comprising elements of the p-type ZnO-based semiconductor layer and the first metal layer at a boundary region therebetween while maintaining a metal phase layer on a surface of the first metal layer; and a second metal layer formation step of forming a second metal layer so as to cover the first metal layer and the exposed portions of the p-type ZnO-based semiconductor layer through openings of the first metal layer.
摘要:
A method includes the steps of, using water vapor and a metalorganic compound not containing oxygen, (a) performing crystal growth at a low growth temperature and at a low growth pressure in the range of 1 kPa to 30 kPa to form a low-temperature grown single-crystal layer; and (b) performing crystal growth at a high growth temperature and at a pressure higher than the low growth pressure to form a high-temperature grown single-crystal layer on the low-temperature grown single-crystal layer.
摘要:
A semiconductor light emitting device can have stable electric characteristics and can emit light with high intensity from a substrate surface. The device can include a transparent substrate and a semiconductor layer on the substrate. The semiconductor layer can include a first conductive type semiconductor layer, a luminescent layer, a second conductive type semiconductor layer, and first and second electrodes disposed to make contact with the first and second conductive type semiconductor layers, respectively. The first conductive type semiconductor layer, the luminescent layer, and the second conductive type semiconductor layer can be laminated in order from the side adjacent the substrate. An end face of the semiconductor layer can include a first terrace provided in an end face of the first conductive type semiconductor layer in parallel with the substrate surface, and an inclined end face region provided nearer to the substrate than the first terrace. The first electrode disposed in the inclined end face region can reflect light emitted from the luminescent layer to the substrate.
摘要:
A confronting surface of a substrate faces a first surface of a semiconductor element. Extension layers are formed on the substrate at positions facing electrodes on the semiconductor element. A levee film is disposed on one of the confronting surface and the first surface. Openings are formed through the levee film. Connection members which is filled but is not completely filled in the openings connect the electrodes and the extension layers.
摘要:
The ohmic contact between a growth substrate and an electrode formed thereon is improved in a zinc oxide-based semiconductor light-emitting device, thereby improving the light-emission efficiency and reliability A step for forming an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer in sequence on a first principal face of a substrate having a composition of MgxZn1-xO (0≦x≦0.68); a step for forming microcracks in a second principal face of the substrate so as to extend toward an interior of the substrate; a step for carrying out a heat treatment at a temperature of 100° C. or higher; and a step for forming an electrode by depositing a metal material composed of one among Al, a Ga alloy, and an In alloy on the second principal face of the substrate, and forming an electrode in a heat treatment at a temperature of 300° C. to 1000° C. are provided.
摘要:
A film forming apparatus is provided that can prevent source gases from reacting together before reaching the substrate being processed in the apparatus, minimize the influence of the radiation heat from the substrate, and make the gas behavior in the reaction chamber better for crystal film formation. The apparatus forms a film on a surface of a heated substrate 5 by causing a first source gas and a second source gas to react together. The apparatus has a processing chamber 1, in which the substrate 5 is placed. The processing chamber 1 is divided into a heating chamber 1a and a reaction chamber 1b by at least the substrate 5 so that the substrate surface can be exposed to the source gases in the reaction chamber 1b. The apparatus further has an exhaust duct 7, through which the exhaust gas can be discharged. The exhaust duct 7 faces the exposed substrate surface and connects with the reaction chamber 1b. The apparatus further has first supply ports 11 and second supply ports 12, through which the first and second source gases respectively can be supplied independently onto the substrate surface. The supply ports 11 and 12 are positioned outside the exhaust duct 7. This enables the source gases to react immediately near the substrate 5 so that high-quality crystal film formation can be performed on the substrate.