Abstract:
A package structure includes a dielectric layer having opposing first and second surfaces, a wiring layer formed on the first surface and having a plurality of conducive vias that penetrate the dielectric layer, an electronic component disposed on the first surface of the dielectric layer and electrically connected to the wiring layer, an encapsulant encapsulating the electronic component, and a packaging substrate disposed on the second surface and electrically connected to the conductive vias. With the dielectric layer in replacement of a conventional silicon board and the wiring layer as a signal transmission medium between the electronic component and the packaging substrate, the package structure does not need through-silicon vias. Therefore, the package structure has a simple fabrication process and a low fabrication cost. The present invention further provides a method of fabricating the package structure.
Abstract:
A substrate structure is provided, which includes: a substrate body having opposite first and second surfaces; a plurality of conductive posts formed on the first surface of the substrate body and electrically connected to the substrate body; and a dielectric layer formed on the first surface of the substrate body for encapsulating the conductive posts, wherein one end surfaces of the conductive posts are exposed from the dielectric layer. Therefore, the present invention replaces the conventional silicon substrate with the dielectric layer so as to eliminate the need to fabricate the conventional TSVs (Through Silicon Vias) and thereby greatly reduce the fabrication cost. The present invention further provides an electronic package having the substrate structure and a fabrication method thereof.
Abstract:
A substrate structure is provided, which includes: a substrate body having opposite first and second surfaces; a plurality of conductive posts formed on the first surface of the substrate body and electrically connected to the substrate body; and a dielectric layer formed on the first surface of the substrate body for encapsulating the conductive posts, wherein one end surfaces of the conductive posts are exposed from the dielectric layer. Therefore, the present invention replaces the conventional silicon substrate with the dielectric layer so as to eliminate the need to fabricate the conventional TSVs (Through Silicon Vias) and thereby greatly reduce the fabrication cost. The present invention further provides an electronic package having the substrate structure and a fabrication method thereof.
Abstract:
A method for fabricating a package structure is provided, which includes the steps of: providing a carrier having a recess; disposing an electronic element in the recess of the carrier; forming an insulating layer in the recess to encapsulate the electronic element; forming a circuit structure on the carrier, wherein the circuit structure is electrically connected to the electronic element; forming a plurality of through holes penetrating the carrier; and forming a conductive material in the through holes to form a plurality of conductors, wherein the conductors are electrically connected to the circuit structure. By using the carrier as a substrate body, the present invention avoids warping of the package structure.
Abstract:
A method of manufacturing an interposer is provided, including forming a plurality of first openings on one surface side of a substrate, forming a first metal layer in the first openings, forming on the other surface side of the substrate a plurality of second openings that are in communication with the first openings, forming a second metal layer in the second openings, and electrically connecting the first metal layer to the second metal layer, so as to form conductive through holes. The conductive through holes are formed stage by stage, such that the fabrication time in forming the metal layers is reduced, and a metal material will not be accumulated too thick on a surface of the substrate. Therefore, the metal material has a smoother surface, and no overburden will be formed around end surfaces of the through holes. An interposer is also provided.
Abstract:
The present invention provides a semiconductor package and a method of fabricating the same, including: placing in a groove of a carrier a semiconductor element having opposing active and non-active surfaces, and side surfaces abutting the active surface and the non-active surface; applying an adhesive material in the groove and around a periphery of the side surfaces of the semiconductor element; forming a dielectric layer on the adhesive material and the active surface of the semiconductor element; forming on the dielectric layer a circuit layer electrically connected to the semiconductor element; and removing a first portion of the carrier below the groove to keep a second portion of the carrier on a side wall of the groove intact for the second portion to function as a supporting member. The present invention does not require formation of a silicon interposer, and therefore the overall cost of a final product is much reduced.
Abstract:
A method for fabricating a package structure is provided, which includes the steps of: providing a carrier having a recess; disposing an electronic element in the recess of the carrier; forming an insulating layer in the recess to encapsulate the electronic element; forming a circuit structure on the carrier, wherein the circuit structure is electrically connected to the electronic element; forming a plurality of through holes penetrating the carrier; and forming a conductive material in the through holes to form a plurality of conductors, wherein the conductors are electrically connected to the circuit structure. By using the carrier as a substrate body, the present invention avoids warping of the package structure.
Abstract:
A semiconductor package is provided, including: an insulating base body having a first surface with an opening and a second surface opposite to the first surface; an insulating extending body extending outward from an edge of the first surface of the insulating base body, wherein the insulating extending body is less in thickness than the insulating base body; an electronic element having opposite active and inactive surfaces and disposed in the opening with its inactive surface facing the insulating base body; a dielectric layer formed in the opening of the insulating base body and on the first surface of the insulating base body, the insulating extending body and the active surface of the electronic element; and a circuit layer formed on the dielectric layer and electrically connected to the electronic element. The configuration of the insulating layer of the invention facilitates to enhance the overall structural rigidity of the package.
Abstract:
A semiconductor package is provided, including: an insulating base body having a first surface with an opening and a second surface opposite to the first surface; an insulating extending body extending outward from an edge of the first surface of the insulating base body, wherein the insulating extending body is less in thickness than the insulating base body; an electronic element having opposite active and inactive surfaces and disposed in the opening with its inactive surface facing the insulating base body; a dielectric layer formed in the opening of the insulating base body and on the first surface of the insulating base body, the insulating extending body and the active surface of the electronic element; and a circuit layer formed on the dielectric layer and electrically connected to the electronic element. The configuration of the insulating layer of the invention facilitates to enhance the overall structural rigidity of the package.
Abstract:
A met of fabricating an electronic package is provided, g: providing a carrier body haying a first surface formed with a plurality of recessed portions, and a second surface opposing the first surface and interconnecting with the recessed portions; forming on the first surface of the carrier body an electronic structure that has a plurality of conductive elements received in the recessed portions correspondingly; and removing a portion of the carrier body, with the conductive elements exposed from the second surface of the carrier body. Therefore, the carrier body is retained, and the fabrication cost is reduced since no temporary material is required. The present invention further provides the electronic package thus fabricated.